Xingrui Zhu, Yuanxing Zhang, Benjamin L. Hanson, David T. Wu, Ning Wu
{"title":"在正交电场和磁场作用下组装的可重构同手性胶体团簇","authors":"Xingrui Zhu, Yuanxing Zhang, Benjamin L. Hanson, David T. Wu, Ning Wu","doi":"10.1073/pnas.2418006122","DOIUrl":null,"url":null,"abstract":"Chiral structures assembled from colloids are of great interest for applications in metamaterials and micromachines. However, similar to their molecular counterparts, these assemblies often result in racemic mixtures. Achieving homochirality by breaking the symmetry remains a significant challenge. Here, we report an approach to obtain single-handed clusters from colloidal dimers using orthogonal electric and magnetic fields. Applying an alternating-current electric field perpendicular to the substrate generates a mixture of chiral clusters with both handedness. However, symmetry is broken by superimposing a planar rotating magnetic field, favoring one chirality over the other. The cluster’s chirality can be precisely controlled in situ by adjusting the magnetic field’s direction and strength, as well as the electric field frequency. Remarkably, this method also induces uniform chirality in initially achiral clusters when exposed solely to the electric field. Both experimental and numerical analyses reveal that the stability of specific handedness depends on the competition between forces and torques generated by the magnetic field, electric field, and electrohydrodynamic flow. Furthermore, we propose a strategy for producing colloidal clusters with uniform sizes and single-handedness through dynamic tuning of the electric and magnetic fields. This work not only demonstrates the potential of integrating external fields but also provides a viable way to create reconfigurable chiral colloidal structures.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"32 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable homochiral colloidal clusters assembled under orthogonally applied electric and magnetic fields\",\"authors\":\"Xingrui Zhu, Yuanxing Zhang, Benjamin L. Hanson, David T. Wu, Ning Wu\",\"doi\":\"10.1073/pnas.2418006122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral structures assembled from colloids are of great interest for applications in metamaterials and micromachines. However, similar to their molecular counterparts, these assemblies often result in racemic mixtures. Achieving homochirality by breaking the symmetry remains a significant challenge. Here, we report an approach to obtain single-handed clusters from colloidal dimers using orthogonal electric and magnetic fields. Applying an alternating-current electric field perpendicular to the substrate generates a mixture of chiral clusters with both handedness. However, symmetry is broken by superimposing a planar rotating magnetic field, favoring one chirality over the other. The cluster’s chirality can be precisely controlled in situ by adjusting the magnetic field’s direction and strength, as well as the electric field frequency. Remarkably, this method also induces uniform chirality in initially achiral clusters when exposed solely to the electric field. Both experimental and numerical analyses reveal that the stability of specific handedness depends on the competition between forces and torques generated by the magnetic field, electric field, and electrohydrodynamic flow. Furthermore, we propose a strategy for producing colloidal clusters with uniform sizes and single-handedness through dynamic tuning of the electric and magnetic fields. This work not only demonstrates the potential of integrating external fields but also provides a viable way to create reconfigurable chiral colloidal structures.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2418006122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418006122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reconfigurable homochiral colloidal clusters assembled under orthogonally applied electric and magnetic fields
Chiral structures assembled from colloids are of great interest for applications in metamaterials and micromachines. However, similar to their molecular counterparts, these assemblies often result in racemic mixtures. Achieving homochirality by breaking the symmetry remains a significant challenge. Here, we report an approach to obtain single-handed clusters from colloidal dimers using orthogonal electric and magnetic fields. Applying an alternating-current electric field perpendicular to the substrate generates a mixture of chiral clusters with both handedness. However, symmetry is broken by superimposing a planar rotating magnetic field, favoring one chirality over the other. The cluster’s chirality can be precisely controlled in situ by adjusting the magnetic field’s direction and strength, as well as the electric field frequency. Remarkably, this method also induces uniform chirality in initially achiral clusters when exposed solely to the electric field. Both experimental and numerical analyses reveal that the stability of specific handedness depends on the competition between forces and torques generated by the magnetic field, electric field, and electrohydrodynamic flow. Furthermore, we propose a strategy for producing colloidal clusters with uniform sizes and single-handedness through dynamic tuning of the electric and magnetic fields. This work not only demonstrates the potential of integrating external fields but also provides a viable way to create reconfigurable chiral colloidal structures.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.