Yuechi Liu, Roberto Terracciano, Jari Scheerstra, Gokhan Yilmaz, Hanglong Wu, Pascal Welzen, Shoupeng Cao, Tania Patino Padial, Loai Abdelmohsen, Jingxin Shao, Bingbing Sun, C. Remzi Becer, Jan C. M. van Hest
{"title":"用于癌细胞动态靶向的快速自主甘露糖基化纳米马达","authors":"Yuechi Liu, Roberto Terracciano, Jari Scheerstra, Gokhan Yilmaz, Hanglong Wu, Pascal Welzen, Shoupeng Cao, Tania Patino Padial, Loai Abdelmohsen, Jingxin Shao, Bingbing Sun, C. Remzi Becer, Jan C. M. van Hest","doi":"10.1002/anie.202505717","DOIUrl":null,"url":null,"abstract":"<p>An attractive strategy in cancer cell therapy is to employ motile nanoparticles that can actively search for their target. Herein, we introduce mannosylated compartmentalized cross-linked enzyme-driven nanomotors (c-CLEnM), which exhibit specific and efficient targeting of Hep G2 cells through elevated autonomous motion. In this design, we constructed biodegradable bowl-shaped stomatocytes encapsulating the enzymes glucose oxidase (GOx) and catalase (CAT) within their nanocavity. A subsequent enzyme crosslinking reaction was performed to guarantee their stability. Furthermore, the c-CLEnM were surface modified with a mannose-functional glycopolymer, enabling binding with receptors expressed on Hep G2 cells. Interestingly, the targeting ligands on the nanomotors not only improved their specificity toward cancer cells but also enhanced motility. Compared to the non-mannosylated nanomotors, mannosylated c-CLEnM exhibited enhanced motion and higher targeting efficiency to cells in glucose-containing ionic environments. The unexpected acceleration in speed resulted from the surface modification of these nanomotors with a glycopolymer layer, which increased the zeta potential and created a shielding effect that mitigated the influence of the surrounding ions. This nanomotor design highlights the synergistic effect of functional glycopolymer modification on cellular uptake, adding an additional level of control to nanomotors for application in cancer therapy.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 23","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202505717","citationCount":"0","resultStr":"{\"title\":\"Fast and Autonomous Mannosylated Nanomotors for Dynamic Cancer Cell Targeting\",\"authors\":\"Yuechi Liu, Roberto Terracciano, Jari Scheerstra, Gokhan Yilmaz, Hanglong Wu, Pascal Welzen, Shoupeng Cao, Tania Patino Padial, Loai Abdelmohsen, Jingxin Shao, Bingbing Sun, C. Remzi Becer, Jan C. M. van Hest\",\"doi\":\"10.1002/anie.202505717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An attractive strategy in cancer cell therapy is to employ motile nanoparticles that can actively search for their target. Herein, we introduce mannosylated compartmentalized cross-linked enzyme-driven nanomotors (c-CLEnM), which exhibit specific and efficient targeting of Hep G2 cells through elevated autonomous motion. In this design, we constructed biodegradable bowl-shaped stomatocytes encapsulating the enzymes glucose oxidase (GOx) and catalase (CAT) within their nanocavity. A subsequent enzyme crosslinking reaction was performed to guarantee their stability. Furthermore, the c-CLEnM were surface modified with a mannose-functional glycopolymer, enabling binding with receptors expressed on Hep G2 cells. Interestingly, the targeting ligands on the nanomotors not only improved their specificity toward cancer cells but also enhanced motility. Compared to the non-mannosylated nanomotors, mannosylated c-CLEnM exhibited enhanced motion and higher targeting efficiency to cells in glucose-containing ionic environments. The unexpected acceleration in speed resulted from the surface modification of these nanomotors with a glycopolymer layer, which increased the zeta potential and created a shielding effect that mitigated the influence of the surrounding ions. This nanomotor design highlights the synergistic effect of functional glycopolymer modification on cellular uptake, adding an additional level of control to nanomotors for application in cancer therapy.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 23\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202505717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505717\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505717","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast and Autonomous Mannosylated Nanomotors for Dynamic Cancer Cell Targeting
An attractive strategy in cancer cell therapy is to employ motile nanoparticles that can actively search for their target. Herein, we introduce mannosylated compartmentalized cross-linked enzyme-driven nanomotors (c-CLEnM), which exhibit specific and efficient targeting of Hep G2 cells through elevated autonomous motion. In this design, we constructed biodegradable bowl-shaped stomatocytes encapsulating the enzymes glucose oxidase (GOx) and catalase (CAT) within their nanocavity. A subsequent enzyme crosslinking reaction was performed to guarantee their stability. Furthermore, the c-CLEnM were surface modified with a mannose-functional glycopolymer, enabling binding with receptors expressed on Hep G2 cells. Interestingly, the targeting ligands on the nanomotors not only improved their specificity toward cancer cells but also enhanced motility. Compared to the non-mannosylated nanomotors, mannosylated c-CLEnM exhibited enhanced motion and higher targeting efficiency to cells in glucose-containing ionic environments. The unexpected acceleration in speed resulted from the surface modification of these nanomotors with a glycopolymer layer, which increased the zeta potential and created a shielding effect that mitigated the influence of the surrounding ions. This nanomotor design highlights the synergistic effect of functional glycopolymer modification on cellular uptake, adding an additional level of control to nanomotors for application in cancer therapy.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.