神经变异药物管理的精准健康方法:利用四个国际队列进行的模型开发和验证研究。

Marlee M Vandewouw, Kamran Niroomand, Harshit Bokadia, Sophia Lenz, Jesiqua Rapley, Alfredo Arias, Jennifer Crosbie, Elisabetta Trinari, Elizabeth Kelley, Robert Nicolson, Russell J Schachar, Paul D Arnold, Alana Iaboni, Jason P Lerch, Melanie Penner, Danielle Baribeau, Evdokia Anagnostou, Azadeh Kushki
{"title":"神经变异药物管理的精准健康方法:利用四个国际队列进行的模型开发和验证研究。","authors":"Marlee M Vandewouw, Kamran Niroomand, Harshit Bokadia, Sophia Lenz, Jesiqua Rapley, Alfredo Arias, Jennifer Crosbie, Elisabetta Trinari, Elizabeth Kelley, Robert Nicolson, Russell J Schachar, Paul D Arnold, Alana Iaboni, Jason P Lerch, Melanie Penner, Danielle Baribeau, Evdokia Anagnostou, Azadeh Kushki","doi":"10.1101/2025.03.12.25323683","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Psychotropic medications are commonly used for children with neurodevelopmental conditions, but their effectiveness varies, making prescribing challenging and potentially exposing individuals to multiple medication trials. We developed artificial intelligence (AI) models to predict medication success for stimulants, anti-depressants, and anti-psychotics. We first demonstrate feasibility using cross-sectional data from three research cohorts, then use a cohort of patients from a pharmacology clinic to predict medication choice by class, longitudinally, from electronic medical records (EMRs).</p><p><strong>Methods: </strong>Models were built to predict cross-sectional medication usage from the Child Behaviour Checklist. Data from the Province of Ontario Neurodevelopmental (POND) network (<i>N</i>=598) trained and tested the models, while data from the Healthy Brain Network (HBN; <i>N</i>=1,764) and Adolescent Brain Cognitive Development (ABCD; <i>N</i>=2,396) studies were used for external validation. For the EMR cohort, data from the Psychopharmacology Program (PPP; <i>N</i>=312) at Holland Bloorview Kids Rehabilitation Hospital were used to predict longitudinal success. Stacked ensemble models were built separately for each medication class, and area under the receiving operating characteristic curve (AU-ROC) evaluated performance.</p><p><strong>Findings: </strong>The research cohorts demonstrated feasibility, with internal testing (POND) achieving an AU-ROC (median [IQR]) of 0.75 [0.73,0.80] for stimulants, 0.83 [0.78,0.87] for anti-depressants, and 0.79 [0.72,0.86] for anti-psychotics. Performance in external testing sets (HBN and ABCD) confirmed generalizability. In the EMR cohort (PPP), AU-ROCs were high: 0.87 [0.83,0.91] for anti-psychotics, 0.84 [0.81,0.88] for stimulants and 0.82 [0.77,0.87] for anti-depressants.</p><p><strong>Interpretation: </strong>This study demonstrates the feasibility of using AI to enhance medication management for children with neurodevelopmental conditions, with expert clinician decisions learned with high accuracy. These findings support the potential for AI decision aids in community settings, promoting faster access to personalized care while highlighting the complexity of clinical and sociodemographic factors influencing medication decisions.</p><p><strong>Funding: </strong>Funding was provided by the Canadian Institutes of Health Research (Operating Grant #527447) and Ontario Brain Institute.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952630/pdf/","citationCount":"0","resultStr":"{\"title\":\"A precision health approach to medication management in neurodevelopmental conditions: a model development and validation study using four international cohorts.\",\"authors\":\"Marlee M Vandewouw, Kamran Niroomand, Harshit Bokadia, Sophia Lenz, Jesiqua Rapley, Alfredo Arias, Jennifer Crosbie, Elisabetta Trinari, Elizabeth Kelley, Robert Nicolson, Russell J Schachar, Paul D Arnold, Alana Iaboni, Jason P Lerch, Melanie Penner, Danielle Baribeau, Evdokia Anagnostou, Azadeh Kushki\",\"doi\":\"10.1101/2025.03.12.25323683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Psychotropic medications are commonly used for children with neurodevelopmental conditions, but their effectiveness varies, making prescribing challenging and potentially exposing individuals to multiple medication trials. We developed artificial intelligence (AI) models to predict medication success for stimulants, anti-depressants, and anti-psychotics. We first demonstrate feasibility using cross-sectional data from three research cohorts, then use a cohort of patients from a pharmacology clinic to predict medication choice by class, longitudinally, from electronic medical records (EMRs).</p><p><strong>Methods: </strong>Models were built to predict cross-sectional medication usage from the Child Behaviour Checklist. Data from the Province of Ontario Neurodevelopmental (POND) network (<i>N</i>=598) trained and tested the models, while data from the Healthy Brain Network (HBN; <i>N</i>=1,764) and Adolescent Brain Cognitive Development (ABCD; <i>N</i>=2,396) studies were used for external validation. For the EMR cohort, data from the Psychopharmacology Program (PPP; <i>N</i>=312) at Holland Bloorview Kids Rehabilitation Hospital were used to predict longitudinal success. Stacked ensemble models were built separately for each medication class, and area under the receiving operating characteristic curve (AU-ROC) evaluated performance.</p><p><strong>Findings: </strong>The research cohorts demonstrated feasibility, with internal testing (POND) achieving an AU-ROC (median [IQR]) of 0.75 [0.73,0.80] for stimulants, 0.83 [0.78,0.87] for anti-depressants, and 0.79 [0.72,0.86] for anti-psychotics. Performance in external testing sets (HBN and ABCD) confirmed generalizability. In the EMR cohort (PPP), AU-ROCs were high: 0.87 [0.83,0.91] for anti-psychotics, 0.84 [0.81,0.88] for stimulants and 0.82 [0.77,0.87] for anti-depressants.</p><p><strong>Interpretation: </strong>This study demonstrates the feasibility of using AI to enhance medication management for children with neurodevelopmental conditions, with expert clinician decisions learned with high accuracy. These findings support the potential for AI decision aids in community settings, promoting faster access to personalized care while highlighting the complexity of clinical and sociodemographic factors influencing medication decisions.</p><p><strong>Funding: </strong>Funding was provided by the Canadian Institutes of Health Research (Operating Grant #527447) and Ontario Brain Institute.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.03.12.25323683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.12.25323683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:精神药物通常用于神经分化儿童,但其有效性各不相同,使得处方具有挑战性,并可能使个体暴露于多种药物试验中。我们开发了人工智能(AI)模型来预测兴奋剂、抗抑郁药和抗精神病药的用药成功率。我们首先使用来自三个研究队列的横断面数据证明了可行性,然后使用来自药理学诊所的患者队列,从电子病历(emr)纵向预测分类药物选择。方法:根据儿童行为检查表建立模型预测横断面药物使用情况。来自安大略省神经发育网络(POND)的数据(N =598)训练和测试了这些模型,而来自健康大脑网络(HBN;N = 1764)和青少年大脑认知发展(ABCD;N = 2396)研究用于外部验证。对于EMR队列,来自精神药理学项目(PPP;N =312)在荷兰布鲁维耶儿童康复医院用于预测纵向成功。对每个药物类别分别建立堆叠集成模型,用接收工作特征曲线下面积(AU-ROC)评价疗效。研究结果:研究队列证明了可行性,内部测试(POND)实现了兴奋剂的AU-ROC(平均95% CI)为0.72[0.71,0.74],抗抑郁药为0.83[0.80,0.85],抗精神病药为0.79[0.76,0.82]。在外部测试集(HBN和ABCD)中的表现证实了通用性。在EMR队列(PPP)中,AU-ROC较高:抗精神病药物为0.90[0.88,0.91],兴奋剂为0.82[0.92,0.83],抗抑郁药物为0.82[0.80,0.84]。解释:本研究证明了使用人工智能加强神经分化儿童药物管理的可行性,专家临床医生的决策学习具有很高的准确性。这些发现支持了人工智能决策辅助在社区环境中的潜力,促进了更快获得个性化护理,同时强调了影响药物决策的临床和社会人口因素的复杂性。资金:资金由加拿大卫生研究所(运营赠款#527447)和安大略省脑研究所提供。背景研究:本研究之前的证据:目前神经发育疾病的药物管理实践,特别是对一线选择没有反应的儿童,是基于临床最佳猜测的方法,可能对儿童、他们的照顾者和卫生系统产生负面影响。适合社区使用的使用人工智能的精密卫生工具有可能提高卫生系统提供及时和有效护理的能力。我们在2024年10月17日搜索PubMed,对于用英语发表的研究,评估神经分化中药物管理的人工智能方法,使用术语(“自闭症”或“神经发育状况”或“神经发育障碍”或“神经分化”)和(“人工智能”或“机器学习”或“深度学习”或“预测”)和(“药物管理”或“药物反应”或“药物适当性”或“药物决策支持”)也包括“药物”替代的术语“药物”。我们没有发现任何相关的研究。本研究的附加价值:本研究论证了利用人工智能辅助神经分化儿童用药管理的可行性,具有较强的学习专家临床决策的能力。这些发现表明,人工智能可能能够支持更快、更个性化的精神药物治疗决策。我们还确定了与模型药物建议相关的临床和人口特征,以及与社会人口因素有关的一些偏差,突出了影响临床决策的因素的复杂性。所有现有证据的含义:这项工作强调了人工智能通过提供个性化治疗建议来改善神经分化儿童药物管理的潜力。然而,已发现的偏见强调了解决现有不平等问题的必要性。未来的研究应侧重于前瞻性验证、融入临床实践和减轻偏倚,以确保所有儿童公平获得有效的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A precision health approach to medication management in neurodevelopmental conditions: a model development and validation study using four international cohorts.

A precision health approach to medication management in neurodevelopmental conditions: a model development and validation study using four international cohorts.

A precision health approach to medication management in neurodevelopmental conditions: a model development and validation study using four international cohorts.

A precision health approach to medication management in neurodevelopmental conditions: a model development and validation study using four international cohorts.

Background: Psychotropic medications are commonly used for children with neurodevelopmental conditions, but their effectiveness varies, making prescribing challenging and potentially exposing individuals to multiple medication trials. We developed artificial intelligence (AI) models to predict medication success for stimulants, anti-depressants, and anti-psychotics. We first demonstrate feasibility using cross-sectional data from three research cohorts, then use a cohort of patients from a pharmacology clinic to predict medication choice by class, longitudinally, from electronic medical records (EMRs).

Methods: Models were built to predict cross-sectional medication usage from the Child Behaviour Checklist. Data from the Province of Ontario Neurodevelopmental (POND) network (N=598) trained and tested the models, while data from the Healthy Brain Network (HBN; N=1,764) and Adolescent Brain Cognitive Development (ABCD; N=2,396) studies were used for external validation. For the EMR cohort, data from the Psychopharmacology Program (PPP; N=312) at Holland Bloorview Kids Rehabilitation Hospital were used to predict longitudinal success. Stacked ensemble models were built separately for each medication class, and area under the receiving operating characteristic curve (AU-ROC) evaluated performance.

Findings: The research cohorts demonstrated feasibility, with internal testing (POND) achieving an AU-ROC (median [IQR]) of 0.75 [0.73,0.80] for stimulants, 0.83 [0.78,0.87] for anti-depressants, and 0.79 [0.72,0.86] for anti-psychotics. Performance in external testing sets (HBN and ABCD) confirmed generalizability. In the EMR cohort (PPP), AU-ROCs were high: 0.87 [0.83,0.91] for anti-psychotics, 0.84 [0.81,0.88] for stimulants and 0.82 [0.77,0.87] for anti-depressants.

Interpretation: This study demonstrates the feasibility of using AI to enhance medication management for children with neurodevelopmental conditions, with expert clinician decisions learned with high accuracy. These findings support the potential for AI decision aids in community settings, promoting faster access to personalized care while highlighting the complexity of clinical and sociodemographic factors influencing medication decisions.

Funding: Funding was provided by the Canadian Institutes of Health Research (Operating Grant #527447) and Ontario Brain Institute.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信