{"title":"甜菜(Beta vulgaris)对田间菟丝子(Cuscuta campestris)硅防护的初步分析。","authors":"Akbar Aliverdi, Hamed Mansouri","doi":"10.1002/pei3.70048","DOIUrl":null,"url":null,"abstract":"<p><p>This preliminary study aimed to investigate the mitigation effect of silicon (Si) on field dodder-induced stress in sugar beet. The experiment was conducted as a completely randomized design with three factors, including parasitic infection (non-parasitized and dodder-parasitized sugar beet), Si source (5 mM Si in the form of Na<sub>2</sub>SiO<sub>3</sub> or K<sub>2</sub>SiO<sub>3</sub>), and Si application method (control, seed pretreatment, irrigation, and foliar spraying). Without Si, field dodder caused a 44.9% reduction in shoot biomass and a 57.5% reduction in root biomass. Although pretreating seeds with Si solutions accelerated emergence, it did not significantly influence any other traits measured in the sugar beet. Sugar beets that received Si through irrigation exhibited better protection against field dodder than those that were sprayed; furthermore, K<sub>2</sub>SiO<sub>3</sub> proved to be more effective than Na<sub>2</sub>SiO<sub>3</sub>. Irrigating or spraying sugar beet with K<sub>2</sub>SiO<sub>3</sub> reduced field dodder biomass by 60%-65%, while the reduction ranged from 20% to 35% with Na<sub>2</sub>SiO<sub>3</sub>. The highest lignin content was observed by watering and spraying dodder-parasitized sugar beet with K<sub>2</sub>SiO<sub>3</sub>, resulting in a 4.2-fold increase through watering and a 3.8-fold increase through spraying. Field dodder infection led to increased activity of enzymes involved in scavenging reactive oxygen species, including catalase, guaiacol peroxidase, superoxide dismutase, and lipoxygenase in sugar beet. The application of Si further increased the activities of superoxide dismutase and lipoxygenase. This preliminary study suggests that irrigating with K<sub>2</sub>SiO<sub>3</sub> can help reduce damage caused by field dodder in sugar beet. However, additional research is necessary to evaluate the crop's response at the field level.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":"6 2","pages":"e70048"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955715/pdf/","citationCount":"0","resultStr":"{\"title\":\"Silicon Protection of Sugar Beet (<i>Beta vulgaris</i>) Against Field Dodder (<i>Cuscuta campestris</i>): Preliminary Analysis.\",\"authors\":\"Akbar Aliverdi, Hamed Mansouri\",\"doi\":\"10.1002/pei3.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This preliminary study aimed to investigate the mitigation effect of silicon (Si) on field dodder-induced stress in sugar beet. The experiment was conducted as a completely randomized design with three factors, including parasitic infection (non-parasitized and dodder-parasitized sugar beet), Si source (5 mM Si in the form of Na<sub>2</sub>SiO<sub>3</sub> or K<sub>2</sub>SiO<sub>3</sub>), and Si application method (control, seed pretreatment, irrigation, and foliar spraying). Without Si, field dodder caused a 44.9% reduction in shoot biomass and a 57.5% reduction in root biomass. Although pretreating seeds with Si solutions accelerated emergence, it did not significantly influence any other traits measured in the sugar beet. Sugar beets that received Si through irrigation exhibited better protection against field dodder than those that were sprayed; furthermore, K<sub>2</sub>SiO<sub>3</sub> proved to be more effective than Na<sub>2</sub>SiO<sub>3</sub>. Irrigating or spraying sugar beet with K<sub>2</sub>SiO<sub>3</sub> reduced field dodder biomass by 60%-65%, while the reduction ranged from 20% to 35% with Na<sub>2</sub>SiO<sub>3</sub>. The highest lignin content was observed by watering and spraying dodder-parasitized sugar beet with K<sub>2</sub>SiO<sub>3</sub>, resulting in a 4.2-fold increase through watering and a 3.8-fold increase through spraying. Field dodder infection led to increased activity of enzymes involved in scavenging reactive oxygen species, including catalase, guaiacol peroxidase, superoxide dismutase, and lipoxygenase in sugar beet. The application of Si further increased the activities of superoxide dismutase and lipoxygenase. This preliminary study suggests that irrigating with K<sub>2</sub>SiO<sub>3</sub> can help reduce damage caused by field dodder in sugar beet. However, additional research is necessary to evaluate the crop's response at the field level.</p>\",\"PeriodicalId\":74457,\"journal\":{\"name\":\"Plant-environment interactions (Hoboken, N.J.)\",\"volume\":\"6 2\",\"pages\":\"e70048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant-environment interactions (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pei3.70048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.70048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
本初步研究旨在探讨硅(Si)对甜菜田间菟丝子诱导的胁迫的缓解作用。试验采用完全随机设计,采用3个因素,分别为寄生感染(未寄生和寄生甜菜)、Si来源(5 mM Si以Na2SiO3或K2SiO3形式存在)和Si施用方式(对照、种子预处理、灌溉和叶面喷施)。在不施用硅的情况下,田间菟丝子导致地上部生物量减少44.9%,根部生物量减少57.5%。虽然用硅溶液预处理种子加速了发芽,但对甜菜的其他性状没有显著影响。通过灌溉施用硅的甜菜比喷施硅的甜菜对田间菟丝子的保护效果更好;此外,K2SiO3被证明比Na2SiO3更有效。用K2SiO3灌溉或喷洒甜菜可使田间菟菟子生物量减少60% ~ 65%,而用Na2SiO3则减少20% ~ 35%。以K2SiO3灌水和喷施甜菜木质素含量最高,灌水和喷施分别提高4.2倍和3.8倍。田间菟丝子感染导致甜菜清除活性氧的酶活性增加,包括过氧化氢酶、愈创木酚过氧化物酶、超氧化物歧化酶和脂氧合酶。硅的施用进一步提高了超氧化物歧化酶和脂肪加氧酶的活性。初步研究表明,K2SiO3灌溉能减少甜菜田菟子虫对甜菜的危害。然而,还需要进一步的研究来评估作物在田间的反应。
Silicon Protection of Sugar Beet (Beta vulgaris) Against Field Dodder (Cuscuta campestris): Preliminary Analysis.
This preliminary study aimed to investigate the mitigation effect of silicon (Si) on field dodder-induced stress in sugar beet. The experiment was conducted as a completely randomized design with three factors, including parasitic infection (non-parasitized and dodder-parasitized sugar beet), Si source (5 mM Si in the form of Na2SiO3 or K2SiO3), and Si application method (control, seed pretreatment, irrigation, and foliar spraying). Without Si, field dodder caused a 44.9% reduction in shoot biomass and a 57.5% reduction in root biomass. Although pretreating seeds with Si solutions accelerated emergence, it did not significantly influence any other traits measured in the sugar beet. Sugar beets that received Si through irrigation exhibited better protection against field dodder than those that were sprayed; furthermore, K2SiO3 proved to be more effective than Na2SiO3. Irrigating or spraying sugar beet with K2SiO3 reduced field dodder biomass by 60%-65%, while the reduction ranged from 20% to 35% with Na2SiO3. The highest lignin content was observed by watering and spraying dodder-parasitized sugar beet with K2SiO3, resulting in a 4.2-fold increase through watering and a 3.8-fold increase through spraying. Field dodder infection led to increased activity of enzymes involved in scavenging reactive oxygen species, including catalase, guaiacol peroxidase, superoxide dismutase, and lipoxygenase in sugar beet. The application of Si further increased the activities of superoxide dismutase and lipoxygenase. This preliminary study suggests that irrigating with K2SiO3 can help reduce damage caused by field dodder in sugar beet. However, additional research is necessary to evaluate the crop's response at the field level.