RatXcan:一个跨物种整合全基因组关联和基因表达数据的框架。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Natasha Santhanam, Sandra Sanchez-Roige, Sabrina Mi, Yanyu Liang, Apurva S Chitre, Daniel Munro, Denghui Chen, Jianjun Gao, Angel Garcia-Martinez, Anthony M George, Alexander F Gileta, Wenyan Han, Katie Holl, Alesa Hughson, Christopher P King, Alexander C Lamparelli, Connor D Martin, Festus Nyasimi, Celine L St Pierre, Sarah Sumner, Jordan Tripi, Tengfei Wang, Hao Chen, Shelly Flagel, Keita Ishiwari, Paul Meyer, Oksana Polesskaya, Laura Saba, Leah C Solberg Woods, Abraham A Palmer, Hae Kyung Im
{"title":"RatXcan:一个跨物种整合全基因组关联和基因表达数据的框架。","authors":"Natasha Santhanam, Sandra Sanchez-Roige, Sabrina Mi, Yanyu Liang, Apurva S Chitre, Daniel Munro, Denghui Chen, Jianjun Gao, Angel Garcia-Martinez, Anthony M George, Alexander F Gileta, Wenyan Han, Katie Holl, Alesa Hughson, Christopher P King, Alexander C Lamparelli, Connor D Martin, Festus Nyasimi, Celine L St Pierre, Sarah Sumner, Jordan Tripi, Tengfei Wang, Hao Chen, Shelly Flagel, Keita Ishiwari, Paul Meyer, Oksana Polesskaya, Laura Saba, Leah C Solberg Woods, Abraham A Palmer, Hae Kyung Im","doi":"10.1371/journal.pgen.1011583","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) have implicated specific alleles and genes as risk factors for numerous complex traits. However, translating GWAS results into biologically and therapeutically meaningful discoveries remains extremely challenging. Most GWAS results identify noncoding regions of the genome, suggesting that differences in gene regulation are the major driver of trait variability. To better integrate GWAS results with gene regulatory polymorphisms, we previously developed PrediXcan (also known as \"transcriptome-wide association studies\" or TWAS), which maps SNPs to predicted gene expression using GWAS data. In this study, we developed RatXcan, a framework that extends this methodology to outbred heterogeneous stock (HS) rats. RatXcan accounts for the close familial relationships among HS rats by modeling the relatedness with a random effect that encodes the genetic relatedness. RatXcan also corrects for polygenic-driven inflation because of the equivalence between a relatedness random effect and the infinitesimal polygenic model. To develop RatXcan, we trained transcript predictors for 8,934 genes using reference genotype and expression data from five rat brain regions. We found that the cis genetic architecture of gene expression in both rats and humans was sparse and similar across brain tissues. We tested the association between predicted expression in rats and two example traits (body length and BMI) using phenotype and genotype data from 5,401 densely genotyped HS rats and identified a significant enrichment between the genes associated with rat and human body length and BMI. Thus, RatXcan represents a valuable tool for identifying the relationship between gene expression and phenotypes across species and paves the way to explore shared biological mechanisms of complex traits.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011583"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RatXcan: A framework for cross-species integration of genome-wide association and gene expression data.\",\"authors\":\"Natasha Santhanam, Sandra Sanchez-Roige, Sabrina Mi, Yanyu Liang, Apurva S Chitre, Daniel Munro, Denghui Chen, Jianjun Gao, Angel Garcia-Martinez, Anthony M George, Alexander F Gileta, Wenyan Han, Katie Holl, Alesa Hughson, Christopher P King, Alexander C Lamparelli, Connor D Martin, Festus Nyasimi, Celine L St Pierre, Sarah Sumner, Jordan Tripi, Tengfei Wang, Hao Chen, Shelly Flagel, Keita Ishiwari, Paul Meyer, Oksana Polesskaya, Laura Saba, Leah C Solberg Woods, Abraham A Palmer, Hae Kyung Im\",\"doi\":\"10.1371/journal.pgen.1011583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWAS) have implicated specific alleles and genes as risk factors for numerous complex traits. However, translating GWAS results into biologically and therapeutically meaningful discoveries remains extremely challenging. Most GWAS results identify noncoding regions of the genome, suggesting that differences in gene regulation are the major driver of trait variability. To better integrate GWAS results with gene regulatory polymorphisms, we previously developed PrediXcan (also known as \\\"transcriptome-wide association studies\\\" or TWAS), which maps SNPs to predicted gene expression using GWAS data. In this study, we developed RatXcan, a framework that extends this methodology to outbred heterogeneous stock (HS) rats. RatXcan accounts for the close familial relationships among HS rats by modeling the relatedness with a random effect that encodes the genetic relatedness. RatXcan also corrects for polygenic-driven inflation because of the equivalence between a relatedness random effect and the infinitesimal polygenic model. To develop RatXcan, we trained transcript predictors for 8,934 genes using reference genotype and expression data from five rat brain regions. We found that the cis genetic architecture of gene expression in both rats and humans was sparse and similar across brain tissues. We tested the association between predicted expression in rats and two example traits (body length and BMI) using phenotype and genotype data from 5,401 densely genotyped HS rats and identified a significant enrichment between the genes associated with rat and human body length and BMI. Thus, RatXcan represents a valuable tool for identifying the relationship between gene expression and phenotypes across species and paves the way to explore shared biological mechanisms of complex traits.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 3\",\"pages\":\"e1011583\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011583\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011583","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

全基因组关联研究(GWAS)表明,特定的等位基因和基因是许多复杂性状的危险因素。然而,将GWAS结果转化为具有生物学和治疗意义的发现仍然极具挑战性。大多数GWAS结果确定了基因组的非编码区域,这表明基因调控的差异是性状变异的主要驱动因素。为了更好地将GWAS结果与基因调控多态性相结合,我们之前开发了PrediXcan(也称为“转录组全关联研究”或TWAS),该研究利用GWAS数据绘制snp以预测基因表达。在这项研究中,我们开发了RatXcan,这是一个将该方法扩展到远交异种种群(HS)大鼠的框架。RatXcan通过用一种编码遗传相关性的随机效应来模拟HS大鼠之间的亲缘关系,从而解释了HS大鼠之间密切的家族关系。RatXcan还校正了多基因驱动的膨胀,因为相关性随机效应和无限小多基因模型之间是等价的。为了开发RatXcan,我们使用来自5个大鼠大脑区域的参考基因型和表达数据,训练了8,934个基因的转录预测因子。我们发现大鼠和人类的基因表达的顺式遗传结构在脑组织中是稀疏的和相似的。我们利用5401只基因分型密集的HS大鼠的表型和基因型数据,测试了大鼠中预测表达与两个示例性状(体长和BMI)之间的关联,发现与大鼠和人类体长和BMI相关的基因显著富集。因此,RatXcan是鉴定跨物种基因表达与表型之间关系的有价值的工具,并为探索复杂性状的共享生物学机制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RatXcan: A framework for cross-species integration of genome-wide association and gene expression data.

Genome-wide association studies (GWAS) have implicated specific alleles and genes as risk factors for numerous complex traits. However, translating GWAS results into biologically and therapeutically meaningful discoveries remains extremely challenging. Most GWAS results identify noncoding regions of the genome, suggesting that differences in gene regulation are the major driver of trait variability. To better integrate GWAS results with gene regulatory polymorphisms, we previously developed PrediXcan (also known as "transcriptome-wide association studies" or TWAS), which maps SNPs to predicted gene expression using GWAS data. In this study, we developed RatXcan, a framework that extends this methodology to outbred heterogeneous stock (HS) rats. RatXcan accounts for the close familial relationships among HS rats by modeling the relatedness with a random effect that encodes the genetic relatedness. RatXcan also corrects for polygenic-driven inflation because of the equivalence between a relatedness random effect and the infinitesimal polygenic model. To develop RatXcan, we trained transcript predictors for 8,934 genes using reference genotype and expression data from five rat brain regions. We found that the cis genetic architecture of gene expression in both rats and humans was sparse and similar across brain tissues. We tested the association between predicted expression in rats and two example traits (body length and BMI) using phenotype and genotype data from 5,401 densely genotyped HS rats and identified a significant enrichment between the genes associated with rat and human body length and BMI. Thus, RatXcan represents a valuable tool for identifying the relationship between gene expression and phenotypes across species and paves the way to explore shared biological mechanisms of complex traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信