广泛分布的拟杆菌噬菌体的不完全裂解循环导致有缺陷的病毒颗粒的形成。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-03-31 eCollection Date: 2025-03-01 DOI:10.1371/journal.pbio.3002787
Sol Vendrell-Fernández, Beatriz Beamud, Yasmina Abou Haydar, Jorge Am de Sousa, Julien Burlaud-Gaillard, Etienne Kornobis, Bertrand Raynal, Joelle Vinh, David Bikard, Jean-Marc Ghigo
{"title":"广泛分布的拟杆菌噬菌体的不完全裂解循环导致有缺陷的病毒颗粒的形成。","authors":"Sol Vendrell-Fernández, Beatriz Beamud, Yasmina Abou Haydar, Jorge Am de Sousa, Julien Burlaud-Gaillard, Etienne Kornobis, Bertrand Raynal, Joelle Vinh, David Bikard, Jean-Marc Ghigo","doi":"10.1371/journal.pbio.3002787","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in metagenomics have led to the identification of new intestinal temperate bacteriophages. However, their experimental characterization remains challenging due to a limited understanding of their lysogenic-lytic cycle and the common lack of plaque formation in vitro. In this study, we investigated the hankyphage, a widespread transposable phage of prominent Bacteroides symbionts. Hankyphages spontaneously produced virions in laboratory conditions even in the absence of inducer, but virions did not show any evidence of infectivity. To increase virion production and raise the chances of observing infection events, we identified a master repressor of the hankyphage lytic cycle, RepCHP, whose silencing amplified hankyphage gene expression, and enhanced replicative transposition and virion production. However, attempts to infect or lysogenize new host cells with different capsular types remained unsuccessful. Transmission electron microscopy and capsid DNA sequencing revealed an abnormal virion morphology and incomplete DNA packaging of the hankyphage, suggesting that it cannot complete its assembly in laboratory conditions for reasons that are yet to be identified. Still, metavirome and phylogenetic analyses were suggestive of hankyphage horizontal transmission. We could also detect the activity of diversity-generating retroelements (DGRs) that mutagenize the hankyphage tail fiber, and likely contribute to its broad host range. This study sheds light on the life cycle of this abundant intestinal bacteriophage and highlights important gaps in our understanding of the factors required for the completion of its life cycle. Elucidating this puzzle will be critical to gain a better understanding of the hankyphage biology and ecological role.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 3","pages":"e3002787"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incomplete lytic cycle of a widespread Bacteroides bacteriophage leads to the formation of defective viral particles.\",\"authors\":\"Sol Vendrell-Fernández, Beatriz Beamud, Yasmina Abou Haydar, Jorge Am de Sousa, Julien Burlaud-Gaillard, Etienne Kornobis, Bertrand Raynal, Joelle Vinh, David Bikard, Jean-Marc Ghigo\",\"doi\":\"10.1371/journal.pbio.3002787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in metagenomics have led to the identification of new intestinal temperate bacteriophages. However, their experimental characterization remains challenging due to a limited understanding of their lysogenic-lytic cycle and the common lack of plaque formation in vitro. In this study, we investigated the hankyphage, a widespread transposable phage of prominent Bacteroides symbionts. Hankyphages spontaneously produced virions in laboratory conditions even in the absence of inducer, but virions did not show any evidence of infectivity. To increase virion production and raise the chances of observing infection events, we identified a master repressor of the hankyphage lytic cycle, RepCHP, whose silencing amplified hankyphage gene expression, and enhanced replicative transposition and virion production. However, attempts to infect or lysogenize new host cells with different capsular types remained unsuccessful. Transmission electron microscopy and capsid DNA sequencing revealed an abnormal virion morphology and incomplete DNA packaging of the hankyphage, suggesting that it cannot complete its assembly in laboratory conditions for reasons that are yet to be identified. Still, metavirome and phylogenetic analyses were suggestive of hankyphage horizontal transmission. We could also detect the activity of diversity-generating retroelements (DGRs) that mutagenize the hankyphage tail fiber, and likely contribute to its broad host range. This study sheds light on the life cycle of this abundant intestinal bacteriophage and highlights important gaps in our understanding of the factors required for the completion of its life cycle. Elucidating this puzzle will be critical to gain a better understanding of the hankyphage biology and ecological role.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 3\",\"pages\":\"e3002787\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002787\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002787","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

宏基因组学的进步导致了新的肠道温带噬菌体的鉴定。然而,由于对其溶原-溶解周期的了解有限,并且在体外缺乏斑块形成,它们的实验表征仍然具有挑战性。在这项研究中,我们研究了汉噬菌体,一种广泛存在的著名拟杆菌共生体的转座噬菌体。在实验室条件下,即使没有诱导剂,汉噬菌体也能自发产生病毒粒子,但病毒粒子没有表现出任何传染性的证据。为了增加病毒粒子的产生并增加观察感染事件的机会,我们鉴定了汉噬菌体裂解周期的主抑制因子RepCHP,它的沉默放大了汉噬菌体基因的表达,增强了复制转位和病毒粒子的产生。然而,尝试感染或溶原不同荚膜类型的新宿主细胞仍然不成功。透射电镜和衣壳DNA测序显示,汉噬菌体的病毒粒子形态异常,DNA包装不完整,表明其无法在实验室条件下完成组装,原因尚不清楚。然而,转移病毒组和系统发育分析提示汉噬菌体水平传播。我们还可以检测多样性生成逆转录因子(DGRs)的活性,DGRs可以诱变汉噬菌体尾部纤维,并可能有助于其广泛的宿主范围。这项研究揭示了这种丰富的肠道噬菌体的生命周期,并突出了我们对完成其生命周期所需因素的理解中的重要空白。阐明这一谜题对于更好地理解汉噬菌体的生物学和生态学作用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incomplete lytic cycle of a widespread Bacteroides bacteriophage leads to the formation of defective viral particles.

Advances in metagenomics have led to the identification of new intestinal temperate bacteriophages. However, their experimental characterization remains challenging due to a limited understanding of their lysogenic-lytic cycle and the common lack of plaque formation in vitro. In this study, we investigated the hankyphage, a widespread transposable phage of prominent Bacteroides symbionts. Hankyphages spontaneously produced virions in laboratory conditions even in the absence of inducer, but virions did not show any evidence of infectivity. To increase virion production and raise the chances of observing infection events, we identified a master repressor of the hankyphage lytic cycle, RepCHP, whose silencing amplified hankyphage gene expression, and enhanced replicative transposition and virion production. However, attempts to infect or lysogenize new host cells with different capsular types remained unsuccessful. Transmission electron microscopy and capsid DNA sequencing revealed an abnormal virion morphology and incomplete DNA packaging of the hankyphage, suggesting that it cannot complete its assembly in laboratory conditions for reasons that are yet to be identified. Still, metavirome and phylogenetic analyses were suggestive of hankyphage horizontal transmission. We could also detect the activity of diversity-generating retroelements (DGRs) that mutagenize the hankyphage tail fiber, and likely contribute to its broad host range. This study sheds light on the life cycle of this abundant intestinal bacteriophage and highlights important gaps in our understanding of the factors required for the completion of its life cycle. Elucidating this puzzle will be critical to gain a better understanding of the hankyphage biology and ecological role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信