与传统的回波特性相比,肌肉组织模拟材料的超声图像纹理特征减少了探针角度和增益设置带来的变异性。

IF 1.8 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Dustin J Oranchuk, Katie L Boncella, Daniella Gonzalez-Rivera, Michael O Harris-Love
{"title":"与传统的回波特性相比,肌肉组织模拟材料的超声图像纹理特征减少了探针角度和增益设置带来的变异性。","authors":"Dustin J Oranchuk, Katie L Boncella, Daniella Gonzalez-Rivera, Michael O Harris-Love","doi":"10.4081/ejtm.2025.13511","DOIUrl":null,"url":null,"abstract":"<p><p>Cost-effective and portable ultrasonography offers a promising approach for monitoring skeletal muscle damage and quality in many contexts. However, echogenicity analysis relies on precise transducer orientations and machine parameters, posing challenges for data pooling across different raters and settings. Muscle texture analysis offers a potential means of reducing inter-rater and machine-setting variability. Scans were assessed at nine angles, controlled using a custom transducer shell and software. Scans were performed three times, and different gains were applied. All scans were performed on a muscle tissue-mimicking phantom to eliminate biological variability. Intra-angle and intra-gain variability and internal consistency were assessed via coefficient of variation (CV%) and Cronbach's alpha (αc). Spearman's (ρ) correlations were employed to determine the relationship between echogenicity and each texture feature. Entropy (angle: CV=2.7-7.6%; gain: CV=10.5%; αc=0.86), and inverse difference moment (angle: CV=3.7-9.8%; gain: CV=16.5%; αc=0.87) were less variable than echogenicity (angle: CV=6.4-19.4%; gain: CV=39.0%; αc=0.82). Angular second moment (angle: CV=17.9-116.6%; gain: CV=71.6%; αc=0.68), contrast (angle: CV=7.8-14.7%; gain: CV=41.8%;αc=0.75), and correlation (angle: CV=9.0-13.5%; gain: CV=28.6%; αc=0.49) features were generally more variable. Entropy (ρ=0.82-0.98, p≤0.011) and inverse difference moment (ρ=-0.98--0.83, p≤0.008), were more strongly correlated with echogenicity than angular second moment (ρ=-0.98--0.77, p≤0.016), contrast (ρ=0.53-0.98, p≤0.15), and correlation (ρ=-0.25--0.19, p=0.520-0.631). Entropy and inverse difference moment features may allow data sharing between laboratory and clinical settings with ultrasound machine parameters and raters of varying skill levels. Clinical and mechanistic studies are required to determine if texture features can replace echogenicity assessments.</p>","PeriodicalId":46459,"journal":{"name":"European Journal of Translational Myology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonographic image texture features in muscle tissue-mimicking material reduce variability introduced by probe angle and gain settings compared to traditional echogenicity.\",\"authors\":\"Dustin J Oranchuk, Katie L Boncella, Daniella Gonzalez-Rivera, Michael O Harris-Love\",\"doi\":\"10.4081/ejtm.2025.13511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cost-effective and portable ultrasonography offers a promising approach for monitoring skeletal muscle damage and quality in many contexts. However, echogenicity analysis relies on precise transducer orientations and machine parameters, posing challenges for data pooling across different raters and settings. Muscle texture analysis offers a potential means of reducing inter-rater and machine-setting variability. Scans were assessed at nine angles, controlled using a custom transducer shell and software. Scans were performed three times, and different gains were applied. All scans were performed on a muscle tissue-mimicking phantom to eliminate biological variability. Intra-angle and intra-gain variability and internal consistency were assessed via coefficient of variation (CV%) and Cronbach's alpha (αc). Spearman's (ρ) correlations were employed to determine the relationship between echogenicity and each texture feature. Entropy (angle: CV=2.7-7.6%; gain: CV=10.5%; αc=0.86), and inverse difference moment (angle: CV=3.7-9.8%; gain: CV=16.5%; αc=0.87) were less variable than echogenicity (angle: CV=6.4-19.4%; gain: CV=39.0%; αc=0.82). Angular second moment (angle: CV=17.9-116.6%; gain: CV=71.6%; αc=0.68), contrast (angle: CV=7.8-14.7%; gain: CV=41.8%;αc=0.75), and correlation (angle: CV=9.0-13.5%; gain: CV=28.6%; αc=0.49) features were generally more variable. Entropy (ρ=0.82-0.98, p≤0.011) and inverse difference moment (ρ=-0.98--0.83, p≤0.008), were more strongly correlated with echogenicity than angular second moment (ρ=-0.98--0.77, p≤0.016), contrast (ρ=0.53-0.98, p≤0.15), and correlation (ρ=-0.25--0.19, p=0.520-0.631). Entropy and inverse difference moment features may allow data sharing between laboratory and clinical settings with ultrasound machine parameters and raters of varying skill levels. Clinical and mechanistic studies are required to determine if texture features can replace echogenicity assessments.</p>\",\"PeriodicalId\":46459,\"journal\":{\"name\":\"European Journal of Translational Myology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Translational Myology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/ejtm.2025.13511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Translational Myology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ejtm.2025.13511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在许多情况下,具有成本效益和便携式超声为监测骨骼肌损伤和质量提供了有前途的方法。然而,回声分析依赖于精确的传感器方向和机器参数,这给不同等级和设置的数据池带来了挑战。肌肉纹理分析提供了一种潜在的方法来减少机器间和机器设置的可变性。扫描从9个角度进行评估,使用定制的传感器外壳和软件进行控制。扫描进行了三次,并应用了不同的增益。所有的扫描都是在模拟肌肉组织的假体上进行的,以消除生物变异。通过变异系数(CV%)和Cronbach’s alpha (αc)评估内角和内增益变异性和内部一致性。采用Spearman’s (ρ)相关来确定回波性与各纹理特征之间的关系。熵(角度:CV=2.7-7.6%;增益:简历= 10.5%;αc=0.86),差矩逆(角:CV=3.7 ~ 9.8%;增益:简历= 16.5%;αc=0.87)比回声性变化小(角度:CV=6.4-19.4%;增益:简历= 39.0%;αc = 0.82)。角秒矩(角:CV=17.9-116.6%;增益:简历= 71.6%;αc=0.68),对比(角度:CV=7.8 ~ 14.7%;增益:CV=41.8%, αc=0.75),相关性(角度:CV=9.0-13.5%;增益:简历= 28.6%;αc=0.49)的特征变化较大。熵(ρ=0.82-0.98, p≤0.011)和差矩逆(ρ=-0.98- 0.83, p≤0.008)与回波性的相关性高于角秒矩(ρ=-0.98- 0.77, p≤0.016)、对比度(ρ=0.53-0.98, p≤0.15)和相关性(ρ=-0.25- 0.19, p=0.520-0.631)。熵和逆差矩特征可以允许实验室和临床设置之间的数据共享,超声机参数和不同技能水平的评分者。需要临床和机械研究来确定纹理特征是否可以取代回声性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonographic image texture features in muscle tissue-mimicking material reduce variability introduced by probe angle and gain settings compared to traditional echogenicity.

Cost-effective and portable ultrasonography offers a promising approach for monitoring skeletal muscle damage and quality in many contexts. However, echogenicity analysis relies on precise transducer orientations and machine parameters, posing challenges for data pooling across different raters and settings. Muscle texture analysis offers a potential means of reducing inter-rater and machine-setting variability. Scans were assessed at nine angles, controlled using a custom transducer shell and software. Scans were performed three times, and different gains were applied. All scans were performed on a muscle tissue-mimicking phantom to eliminate biological variability. Intra-angle and intra-gain variability and internal consistency were assessed via coefficient of variation (CV%) and Cronbach's alpha (αc). Spearman's (ρ) correlations were employed to determine the relationship between echogenicity and each texture feature. Entropy (angle: CV=2.7-7.6%; gain: CV=10.5%; αc=0.86), and inverse difference moment (angle: CV=3.7-9.8%; gain: CV=16.5%; αc=0.87) were less variable than echogenicity (angle: CV=6.4-19.4%; gain: CV=39.0%; αc=0.82). Angular second moment (angle: CV=17.9-116.6%; gain: CV=71.6%; αc=0.68), contrast (angle: CV=7.8-14.7%; gain: CV=41.8%;αc=0.75), and correlation (angle: CV=9.0-13.5%; gain: CV=28.6%; αc=0.49) features were generally more variable. Entropy (ρ=0.82-0.98, p≤0.011) and inverse difference moment (ρ=-0.98--0.83, p≤0.008), were more strongly correlated with echogenicity than angular second moment (ρ=-0.98--0.77, p≤0.016), contrast (ρ=0.53-0.98, p≤0.15), and correlation (ρ=-0.25--0.19, p=0.520-0.631). Entropy and inverse difference moment features may allow data sharing between laboratory and clinical settings with ultrasound machine parameters and raters of varying skill levels. Clinical and mechanistic studies are required to determine if texture features can replace echogenicity assessments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Translational Myology
European Journal of Translational Myology MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
3.30
自引率
27.30%
发文量
74
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信