生物医学本体中的富集分析和深度学习:应用与进展。

Q2 Medicine
Hong-Yu Fu, Yang-Yang Liu, Mei-Yi Zhang, Hai-Xiu Yang
{"title":"生物医学本体中的富集分析和深度学习:应用与进展。","authors":"Hong-Yu Fu,&nbsp;Yang-Yang Liu,&nbsp;Mei-Yi Zhang,&nbsp;Hai-Xiu Yang","doi":"10.24920/004464","DOIUrl":null,"url":null,"abstract":"<div><div>Biomedical big data, characterized by its massive scale, multi-dimensionality, and heterogeneity, offers novel perspectives for disease research, elucidates biological principles, and simultaneously prompts changes in related research methodologies. Biomedical ontology, as a shared formal conceptual system, not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research. In this review, we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties, highlighting how technological advancements are enabling the more comprehensive use of ontology information. Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list. Deep learning, on the other hand, represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction. With the continuous evolution of big data technologies, the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research.</div></div>","PeriodicalId":35615,"journal":{"name":"Chinese Medical Sciences Journal","volume":"40 1","pages":"Pages 45-56"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enrichment Analysis and Deep Learning in Biomedical Ontology: Applications and Advancements\",\"authors\":\"Hong-Yu Fu,&nbsp;Yang-Yang Liu,&nbsp;Mei-Yi Zhang,&nbsp;Hai-Xiu Yang\",\"doi\":\"10.24920/004464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomedical big data, characterized by its massive scale, multi-dimensionality, and heterogeneity, offers novel perspectives for disease research, elucidates biological principles, and simultaneously prompts changes in related research methodologies. Biomedical ontology, as a shared formal conceptual system, not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research. In this review, we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties, highlighting how technological advancements are enabling the more comprehensive use of ontology information. Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list. Deep learning, on the other hand, represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction. With the continuous evolution of big data technologies, the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research.</div></div>\",\"PeriodicalId\":35615,\"journal\":{\"name\":\"Chinese Medical Sciences Journal\",\"volume\":\"40 1\",\"pages\":\"Pages 45-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medical Sciences Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001929425000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Sciences Journal","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001929425000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

生物医学大数据具有大规模、多维度、异质性等特点,为疾病研究提供了新的视角,阐明了生物学原理,同时也推动了相关研究方法的变革。生物医学本体作为一个共享的形式化概念系统,不仅为多源生物医学数据提供了标准化的术语,而且为生物医学研究提供了坚实的数据基础和框架。本文从生物医学本体的结构和语义标注特性两方面综述了生物医学本体的富集分析和深度学习,重点介绍了技术进步如何使本体信息得到更全面的利用。富集分析是本体论在阐明特定分子序列潜在生物学意义方面的重要应用。另一方面,深度学习代表了一种越来越强大的分析工具,可以更广泛地与本体相结合,进行分析和预测。随着大数据技术的不断发展,这些技术与生物医学本体的整合为推进生物医学研究开辟了令人兴奋的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enrichment Analysis and Deep Learning in Biomedical Ontology: Applications and Advancements
Biomedical big data, characterized by its massive scale, multi-dimensionality, and heterogeneity, offers novel perspectives for disease research, elucidates biological principles, and simultaneously prompts changes in related research methodologies. Biomedical ontology, as a shared formal conceptual system, not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research. In this review, we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties, highlighting how technological advancements are enabling the more comprehensive use of ontology information. Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list. Deep learning, on the other hand, represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction. With the continuous evolution of big data technologies, the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Medical Sciences Journal
Chinese Medical Sciences Journal Medicine-Medicine (all)
CiteScore
2.40
自引率
0.00%
发文量
1275
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信