微小路面损伤目标检测模型设计。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chenguang Wu, Min Ye, Hongwei Li, Jiale Zhang
{"title":"微小路面损伤目标检测模型设计。","authors":"Chenguang Wu, Min Ye, Hongwei Li, Jiale Zhang","doi":"10.1038/s41598-025-95502-z","DOIUrl":null,"url":null,"abstract":"<p><p>Road surface damage detection is crucial in highway maintenance and traffic safety maintenance. However, existing detection methods generally suffer from insufficient generalization capability, poor detection of tiny damage, and difficulty balancing detection accuracy and computational cost. This study proposes a novel road surface damage object detection model (RSDD) to address these challenges. Firstly, a backbone applied to road surface damage feature extraction is designed to solve the problems of feature loss and insufficient extraction of tiny damage during feature extraction. Second, to achieve efficient feature fusion, multiple attention is introduced to optimize features at different stages. Then, a bi-directional feature fusion path is proposed to realize the information exchange between features of different stages, and an enhanced feature pyramid is constructed. Finally, a multi-scale decoupled detection head is adopted to realize the accurate detection of different sizes of damage. Additionally, this study built a road dataset containing rich samples of tiny damage. Extensive comparative experiments are conducted on the collected dataset and a public dataset to validate the generalization performance of RSDD. The experimental results show that RSDD has significant advantages in tiny damage detection while having excellent trade-offs in terms of accuracy, scale, and speed. Specifically, the model achieves 70.8% and 61.2% mAP<sub>50</sub> on the two datasets with an inference latency of only 4.5 ms under the condition that the number of parameters is 16.5 M. Compared with YOLOv8s, which has a similar number of parameters, RSDD achieves 5.5% and 3.3% improvement in the detection accuracy, respectively, and speeds up the inference by 0.6 ms.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11032"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Object detection model design for tiny road surface damage.\",\"authors\":\"Chenguang Wu, Min Ye, Hongwei Li, Jiale Zhang\",\"doi\":\"10.1038/s41598-025-95502-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Road surface damage detection is crucial in highway maintenance and traffic safety maintenance. However, existing detection methods generally suffer from insufficient generalization capability, poor detection of tiny damage, and difficulty balancing detection accuracy and computational cost. This study proposes a novel road surface damage object detection model (RSDD) to address these challenges. Firstly, a backbone applied to road surface damage feature extraction is designed to solve the problems of feature loss and insufficient extraction of tiny damage during feature extraction. Second, to achieve efficient feature fusion, multiple attention is introduced to optimize features at different stages. Then, a bi-directional feature fusion path is proposed to realize the information exchange between features of different stages, and an enhanced feature pyramid is constructed. Finally, a multi-scale decoupled detection head is adopted to realize the accurate detection of different sizes of damage. Additionally, this study built a road dataset containing rich samples of tiny damage. Extensive comparative experiments are conducted on the collected dataset and a public dataset to validate the generalization performance of RSDD. The experimental results show that RSDD has significant advantages in tiny damage detection while having excellent trade-offs in terms of accuracy, scale, and speed. Specifically, the model achieves 70.8% and 61.2% mAP<sub>50</sub> on the two datasets with an inference latency of only 4.5 ms under the condition that the number of parameters is 16.5 M. Compared with YOLOv8s, which has a similar number of parameters, RSDD achieves 5.5% and 3.3% improvement in the detection accuracy, respectively, and speeds up the inference by 0.6 ms.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11032\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95502-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95502-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

路面损伤检测在公路养护和交通安全养护中具有重要意义。然而,现有的检测方法普遍存在泛化能力不足、微小损伤检测能力差、难以平衡检测精度和计算成本等问题。本研究提出了一种新的路面损伤目标检测模型(RSDD)来解决这些问题。首先,设计了一种用于路面损伤特征提取的主干,解决了特征提取过程中存在的特征丢失和微小损伤提取不足的问题;其次,为了实现高效的特征融合,引入多重关注对不同阶段的特征进行优化。然后,提出了双向特征融合路径,实现了不同阶段特征之间的信息交换,构建了增强特征金字塔;最后,采用多尺度解耦检测头,实现对不同尺寸损伤的精确检测。此外,本研究建立了一个包含丰富的微小损伤样本的道路数据集。在收集的数据集和公共数据集上进行了大量的对比实验,以验证RSDD的泛化性能。实验结果表明,RSDD在微小损伤检测方面具有显著的优势,同时在精度、规模和速度方面具有良好的权衡。具体来说,在参数数为16.5 m的情况下,模型在两个数据集上的mAP50分别达到70.8%和61.2%,推理延迟仅为4.5 ms,与参数数相近的YOLOv8s相比,RSDD的检测精度分别提高5.5%和3.3%,推理速度提高0.6 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object detection model design for tiny road surface damage.

Road surface damage detection is crucial in highway maintenance and traffic safety maintenance. However, existing detection methods generally suffer from insufficient generalization capability, poor detection of tiny damage, and difficulty balancing detection accuracy and computational cost. This study proposes a novel road surface damage object detection model (RSDD) to address these challenges. Firstly, a backbone applied to road surface damage feature extraction is designed to solve the problems of feature loss and insufficient extraction of tiny damage during feature extraction. Second, to achieve efficient feature fusion, multiple attention is introduced to optimize features at different stages. Then, a bi-directional feature fusion path is proposed to realize the information exchange between features of different stages, and an enhanced feature pyramid is constructed. Finally, a multi-scale decoupled detection head is adopted to realize the accurate detection of different sizes of damage. Additionally, this study built a road dataset containing rich samples of tiny damage. Extensive comparative experiments are conducted on the collected dataset and a public dataset to validate the generalization performance of RSDD. The experimental results show that RSDD has significant advantages in tiny damage detection while having excellent trade-offs in terms of accuracy, scale, and speed. Specifically, the model achieves 70.8% and 61.2% mAP50 on the two datasets with an inference latency of only 4.5 ms under the condition that the number of parameters is 16.5 M. Compared with YOLOv8s, which has a similar number of parameters, RSDD achieves 5.5% and 3.3% improvement in the detection accuracy, respectively, and speeds up the inference by 0.6 ms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信