Jingxi Wang, Hongyang Wang, Xin Kang, Xiaotian Wang, Xi Li, Jie Guo, Xuan Jing, Xi Chu, Xue Han
{"title":"结合网络药理学、分子对接、动物实验,揭示橙皮苷治疗COPD的潜在机制。","authors":"Jingxi Wang, Hongyang Wang, Xin Kang, Xiaotian Wang, Xi Li, Jie Guo, Xuan Jing, Xi Chu, Xue Han","doi":"10.1038/s41598-025-95810-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hesperetin (HE), a natural flavonoid exhibiting anti-inflammatory and antioxidant properties, holds significant potential in treating chronic obstructive pulmonary disease (COPD). Nonetheless, the precise mechanisms underlying its effects are yet to be fully elucidated. In this study, we aim to explore the role and potential mechanism of HE in treating COPD using network pharmacology, molecular docking and experimental validation. We screened for HE and COPD-related targets from public databases, and then imported potential targets into a STRING database to establish a protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment analysis were performed to obtain key signaling pathways. We then predicted the binding interactions between HE and core targets using molecular docking. The animal model of COPD was established through lipopolysaccharide and cigarette smoke induction in mice to observe lung function, inflammatory factors, pathology, and the expression of related proteins. Network pharmacology findings unveiled that HE and COPD shared 105 common targets. MAPKs and NF-κB signaling pathways were selected for further validation. In animal experiment, HE enhanced lung function and histopathological morphology, while reducing inflammation levels. The results of Western blot tests indicated that HE treatment considerably inhibited the expression of MAPKs and NF-κB. HE effectively reduced lung inflammation and improved lung function in mice. This mechanism may be achieved by inhibition of MAPKs and NF-κB signaling pathways.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11024"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated network pharmacology, molecular docking, and animal experiments to reveal the potential mechanism of hesperetin on COPD.\",\"authors\":\"Jingxi Wang, Hongyang Wang, Xin Kang, Xiaotian Wang, Xi Li, Jie Guo, Xuan Jing, Xi Chu, Xue Han\",\"doi\":\"10.1038/s41598-025-95810-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hesperetin (HE), a natural flavonoid exhibiting anti-inflammatory and antioxidant properties, holds significant potential in treating chronic obstructive pulmonary disease (COPD). Nonetheless, the precise mechanisms underlying its effects are yet to be fully elucidated. In this study, we aim to explore the role and potential mechanism of HE in treating COPD using network pharmacology, molecular docking and experimental validation. We screened for HE and COPD-related targets from public databases, and then imported potential targets into a STRING database to establish a protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment analysis were performed to obtain key signaling pathways. We then predicted the binding interactions between HE and core targets using molecular docking. The animal model of COPD was established through lipopolysaccharide and cigarette smoke induction in mice to observe lung function, inflammatory factors, pathology, and the expression of related proteins. Network pharmacology findings unveiled that HE and COPD shared 105 common targets. MAPKs and NF-κB signaling pathways were selected for further validation. In animal experiment, HE enhanced lung function and histopathological morphology, while reducing inflammation levels. The results of Western blot tests indicated that HE treatment considerably inhibited the expression of MAPKs and NF-κB. HE effectively reduced lung inflammation and improved lung function in mice. This mechanism may be achieved by inhibition of MAPKs and NF-κB signaling pathways.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11024\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95810-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95810-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Integrated network pharmacology, molecular docking, and animal experiments to reveal the potential mechanism of hesperetin on COPD.
Hesperetin (HE), a natural flavonoid exhibiting anti-inflammatory and antioxidant properties, holds significant potential in treating chronic obstructive pulmonary disease (COPD). Nonetheless, the precise mechanisms underlying its effects are yet to be fully elucidated. In this study, we aim to explore the role and potential mechanism of HE in treating COPD using network pharmacology, molecular docking and experimental validation. We screened for HE and COPD-related targets from public databases, and then imported potential targets into a STRING database to establish a protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment analysis were performed to obtain key signaling pathways. We then predicted the binding interactions between HE and core targets using molecular docking. The animal model of COPD was established through lipopolysaccharide and cigarette smoke induction in mice to observe lung function, inflammatory factors, pathology, and the expression of related proteins. Network pharmacology findings unveiled that HE and COPD shared 105 common targets. MAPKs and NF-κB signaling pathways were selected for further validation. In animal experiment, HE enhanced lung function and histopathological morphology, while reducing inflammation levels. The results of Western blot tests indicated that HE treatment considerably inhibited the expression of MAPKs and NF-κB. HE effectively reduced lung inflammation and improved lung function in mice. This mechanism may be achieved by inhibition of MAPKs and NF-κB signaling pathways.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.