{"title":"斑马鱼细胞中溶解的环境 RNA 的释放和降解。","authors":"Zhongneng Xu, Shuichi Asakawa","doi":"10.1080/15476286.2025.2486281","DOIUrl":null,"url":null,"abstract":"<p><p>The sources and degradation profiles of dissolved environmental RNAs from fish in water remain unknown. In this study, laboratory experiments and mathematical modelling were conducted to investigate the permeability of RNA extracted from zebrafish cells through filters, the release of dissolved environmental RNAs from live and dying zebrafish cells, and the degradation of RNA extracted from zebrafish cells in a non-sterile aqueous environment. This research aimed to provide biological and ecological insights into fish RNAs dissolved in water. The results showed that most of the RNA extracted from zebrafish cells was detected in the filtrates after passage through 0.45 µm filters. Over the course of the 6-day experiment, dynamic levels of the RNAs in the liquid environment containing live or dying zebrafish cells were determined. The release and degradation rates of dissolved environmental RNA from zebrafish cells were calculated using mathematical modelling. RNA extracted from zebrafish cells degraded in non-sterile water in the tubes, and after 2 months, more than 15% of the RNAs in the water remained detectable. The half-life of the RNA in the tubes was approximately 20 ~ 43 days. The modelling results suggest that the levels of the dissolved environmental fish RNAs in natural waters or aquariums could be so low that it would be difficult to detect them using current techniques. The results obtained in this study will help develop new methods for measuring the dynamics of dissolved environmental fish RNAs in water and determining their significance.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Release and degradation of dissolved environmental RNAs from zebrafish cells.\",\"authors\":\"Zhongneng Xu, Shuichi Asakawa\",\"doi\":\"10.1080/15476286.2025.2486281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sources and degradation profiles of dissolved environmental RNAs from fish in water remain unknown. In this study, laboratory experiments and mathematical modelling were conducted to investigate the permeability of RNA extracted from zebrafish cells through filters, the release of dissolved environmental RNAs from live and dying zebrafish cells, and the degradation of RNA extracted from zebrafish cells in a non-sterile aqueous environment. This research aimed to provide biological and ecological insights into fish RNAs dissolved in water. The results showed that most of the RNA extracted from zebrafish cells was detected in the filtrates after passage through 0.45 µm filters. Over the course of the 6-day experiment, dynamic levels of the RNAs in the liquid environment containing live or dying zebrafish cells were determined. The release and degradation rates of dissolved environmental RNA from zebrafish cells were calculated using mathematical modelling. RNA extracted from zebrafish cells degraded in non-sterile water in the tubes, and after 2 months, more than 15% of the RNAs in the water remained detectable. The half-life of the RNA in the tubes was approximately 20 ~ 43 days. The modelling results suggest that the levels of the dissolved environmental fish RNAs in natural waters or aquariums could be so low that it would be difficult to detect them using current techniques. The results obtained in this study will help develop new methods for measuring the dynamics of dissolved environmental fish RNAs in water and determining their significance.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2025.2486281\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2486281","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Release and degradation of dissolved environmental RNAs from zebrafish cells.
The sources and degradation profiles of dissolved environmental RNAs from fish in water remain unknown. In this study, laboratory experiments and mathematical modelling were conducted to investigate the permeability of RNA extracted from zebrafish cells through filters, the release of dissolved environmental RNAs from live and dying zebrafish cells, and the degradation of RNA extracted from zebrafish cells in a non-sterile aqueous environment. This research aimed to provide biological and ecological insights into fish RNAs dissolved in water. The results showed that most of the RNA extracted from zebrafish cells was detected in the filtrates after passage through 0.45 µm filters. Over the course of the 6-day experiment, dynamic levels of the RNAs in the liquid environment containing live or dying zebrafish cells were determined. The release and degradation rates of dissolved environmental RNA from zebrafish cells were calculated using mathematical modelling. RNA extracted from zebrafish cells degraded in non-sterile water in the tubes, and after 2 months, more than 15% of the RNAs in the water remained detectable. The half-life of the RNA in the tubes was approximately 20 ~ 43 days. The modelling results suggest that the levels of the dissolved environmental fish RNAs in natural waters or aquariums could be so low that it would be difficult to detect them using current techniques. The results obtained in this study will help develop new methods for measuring the dynamics of dissolved environmental fish RNAs in water and determining their significance.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy