ATAC-seq和RNA-seq的整合揭示了结结草对干旱响应中染色质可及性和基因表达的动态。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Liangying Shen, Zewen Qi, Ye Ai, Jiahang Zhang, Yuehui Chao, Liebao Han, Lixin Xu
{"title":"ATAC-seq和RNA-seq的整合揭示了结结草对干旱响应中染色质可及性和基因表达的动态。","authors":"Liangying Shen, Zewen Qi, Ye Ai, Jiahang Zhang, Yuehui Chao, Liebao Han, Lixin Xu","doi":"10.1007/s00299-025-03469-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The 'X4' accession of zoysiagrass demonstrated superior drought tolerance compared to other accessions. Integration analysis of transcriptomics and epigenomics revealed a positive correlation between ATAC-seq peak intensity and gene expression levels. Six motifs involved in regulating drought responses were identified, which are similar to the domains of the ERF and C2H2 transcription factor families. Heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress, allowing robust growth even at high PEG6000 concentrations. Zoysiagrass is renowned for its drought tolerance and serves as an exceptional domestic turfgrass in China. However, the changes in chromatin accessibility during drought in zoysiagrass are not well understood. We conducted a preliminary evaluation of the phenotypic changes in drought tolerance for six zoysiagrass cultivars, taking into account their growth characteristics and physiological traits under drought conditions. Additionally, we utilized an integrated multi-omics strategy, encompassing RNA sequencing (RNA-seq), Assay for Transposase Accessible Chromatin using high-throughput sequencing (ATAC-seq), and reverse transcription quantitative PCR (RT-qPCR) verification experiments, to gain deeper understanding of the chromatin accessibility patterns linked to gene expression in response to drought stress in zoysiagrass. Preliminary analysis of the trends in relative water content and proline content suggested that the variety 'X4' exhibited superior drought tolerance compared to the other five accessions. The KEGG pathway enrichment analysis revealed that zoysiagrass responded to environmental stress by regulating stress response and antioxidant defense pathways. Notably, the expression levels of genes Zja03G031540 and Zja11G000860 were significantly increased in the 'X4' zoysiagrass genotype, which exhibited improved drought tolerance, compared to the 'X1' zoysiagrass genotype with reduced drought tolerance. This study suggested that 63 high-confidence genes are related to drought stress, including Zja03G031540 and Zja11G000860. Additionally, six motifs regulating drought responses were unearthed. Furthermore, the heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress. The study discovered a positive correlation between ATAC-seq peak intensity and gene expression levels. The expression of high-confidence genes was linked to zoysiagrass resistance evaluation and phenotypic traits, implying that these genes are involved in responding to external drought stress. This study combined ATAC-seq and RNA-seq technologies for the first time to identify drought-related gene expression in zoysiagrass, elucidating the grass adaptation to environmental stress and the regulatory mechanisms underlying stress responses, and laying the groundwork for zoysiagrass improvement and breeding.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 4","pages":"92"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of ATAC-seq and RNA-seq reveals the dynamics of chromatin accessibility and gene expression in zoysiagrass response to drought.\",\"authors\":\"Liangying Shen, Zewen Qi, Ye Ai, Jiahang Zhang, Yuehui Chao, Liebao Han, Lixin Xu\",\"doi\":\"10.1007/s00299-025-03469-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>The 'X4' accession of zoysiagrass demonstrated superior drought tolerance compared to other accessions. Integration analysis of transcriptomics and epigenomics revealed a positive correlation between ATAC-seq peak intensity and gene expression levels. Six motifs involved in regulating drought responses were identified, which are similar to the domains of the ERF and C2H2 transcription factor families. Heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress, allowing robust growth even at high PEG6000 concentrations. Zoysiagrass is renowned for its drought tolerance and serves as an exceptional domestic turfgrass in China. However, the changes in chromatin accessibility during drought in zoysiagrass are not well understood. We conducted a preliminary evaluation of the phenotypic changes in drought tolerance for six zoysiagrass cultivars, taking into account their growth characteristics and physiological traits under drought conditions. Additionally, we utilized an integrated multi-omics strategy, encompassing RNA sequencing (RNA-seq), Assay for Transposase Accessible Chromatin using high-throughput sequencing (ATAC-seq), and reverse transcription quantitative PCR (RT-qPCR) verification experiments, to gain deeper understanding of the chromatin accessibility patterns linked to gene expression in response to drought stress in zoysiagrass. Preliminary analysis of the trends in relative water content and proline content suggested that the variety 'X4' exhibited superior drought tolerance compared to the other five accessions. The KEGG pathway enrichment analysis revealed that zoysiagrass responded to environmental stress by regulating stress response and antioxidant defense pathways. Notably, the expression levels of genes Zja03G031540 and Zja11G000860 were significantly increased in the 'X4' zoysiagrass genotype, which exhibited improved drought tolerance, compared to the 'X1' zoysiagrass genotype with reduced drought tolerance. This study suggested that 63 high-confidence genes are related to drought stress, including Zja03G031540 and Zja11G000860. Additionally, six motifs regulating drought responses were unearthed. Furthermore, the heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress. The study discovered a positive correlation between ATAC-seq peak intensity and gene expression levels. The expression of high-confidence genes was linked to zoysiagrass resistance evaluation and phenotypic traits, implying that these genes are involved in responding to external drought stress. This study combined ATAC-seq and RNA-seq technologies for the first time to identify drought-related gene expression in zoysiagrass, elucidating the grass adaptation to environmental stress and the regulatory mechanisms underlying stress responses, and laying the groundwork for zoysiagrass improvement and breeding.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 4\",\"pages\":\"92\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-025-03469-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03469-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键词:结缕草X4系与其他系相比表现出更强的耐旱性。转录组学和表观基因组学的整合分析显示,ATAC-seq峰值强度与基因表达水平呈正相关。发现了6个与干旱响应调控有关的基序,它们与ERF和C2H2转录因子家族的结构域相似。Zja11G000860在酵母中的异源表达增强了对干旱胁迫的耐受性,即使在高PEG6000浓度下也能保持强劲的生长。结缕草以耐旱著称,在中国是一种特殊的国产草坪草。然而,结缕草在干旱条件下染色质可及性的变化尚不清楚。考虑干旱条件下结缕草的生长特性和生理特性,对6个结缕草品种耐旱性的表型变化进行了初步评价。此外,我们利用综合的多组学策略,包括RNA测序(RNA-seq),利用高通量测序(ATAC-seq)进行转座酶可及染色质分析(ATAC-seq)和反转录定量PCR (RT-qPCR)验证实验,以更深入地了解结缕草在干旱胁迫下与基因表达相关的染色质可及性模式。对相对含水量和脯氨酸含量变化趋势的初步分析表明,X4的抗旱性优于其他5个品种。KEGG途径富集分析表明,结缕草通过调节应激反应和抗氧化防御途径来应对环境胁迫。Zja03G031540和Zja11G000860基因在耐旱性较强的‘X4’结穗草基因型中的表达量显著高于耐旱性较弱的‘X1’结穗草基因型。本研究认为,与干旱胁迫相关的高置信度基因有Zja03G031540和Zja11G000860等63个。此外,还发现了6个调控干旱响应的基序。此外,Zja11G000860在酵母中的异源表达增强了酵母对干旱胁迫的耐受性。研究发现ATAC-seq峰值强度与基因表达水平呈正相关。高置信度基因的表达与结缕草的抗性评价和表型性状有关,表明这些基因参与了对外部干旱胁迫的响应。本研究首次结合ATAC-seq和RNA-seq技术,鉴定了结缕草干旱相关基因的表达,阐明了结缕草对环境胁迫的适应及胁迫应答的调控机制,为结缕草改良育种奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of ATAC-seq and RNA-seq reveals the dynamics of chromatin accessibility and gene expression in zoysiagrass response to drought.

Key message: The 'X4' accession of zoysiagrass demonstrated superior drought tolerance compared to other accessions. Integration analysis of transcriptomics and epigenomics revealed a positive correlation between ATAC-seq peak intensity and gene expression levels. Six motifs involved in regulating drought responses were identified, which are similar to the domains of the ERF and C2H2 transcription factor families. Heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress, allowing robust growth even at high PEG6000 concentrations. Zoysiagrass is renowned for its drought tolerance and serves as an exceptional domestic turfgrass in China. However, the changes in chromatin accessibility during drought in zoysiagrass are not well understood. We conducted a preliminary evaluation of the phenotypic changes in drought tolerance for six zoysiagrass cultivars, taking into account their growth characteristics and physiological traits under drought conditions. Additionally, we utilized an integrated multi-omics strategy, encompassing RNA sequencing (RNA-seq), Assay for Transposase Accessible Chromatin using high-throughput sequencing (ATAC-seq), and reverse transcription quantitative PCR (RT-qPCR) verification experiments, to gain deeper understanding of the chromatin accessibility patterns linked to gene expression in response to drought stress in zoysiagrass. Preliminary analysis of the trends in relative water content and proline content suggested that the variety 'X4' exhibited superior drought tolerance compared to the other five accessions. The KEGG pathway enrichment analysis revealed that zoysiagrass responded to environmental stress by regulating stress response and antioxidant defense pathways. Notably, the expression levels of genes Zja03G031540 and Zja11G000860 were significantly increased in the 'X4' zoysiagrass genotype, which exhibited improved drought tolerance, compared to the 'X1' zoysiagrass genotype with reduced drought tolerance. This study suggested that 63 high-confidence genes are related to drought stress, including Zja03G031540 and Zja11G000860. Additionally, six motifs regulating drought responses were unearthed. Furthermore, the heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress. The study discovered a positive correlation between ATAC-seq peak intensity and gene expression levels. The expression of high-confidence genes was linked to zoysiagrass resistance evaluation and phenotypic traits, implying that these genes are involved in responding to external drought stress. This study combined ATAC-seq and RNA-seq technologies for the first time to identify drought-related gene expression in zoysiagrass, elucidating the grass adaptation to environmental stress and the regulatory mechanisms underlying stress responses, and laying the groundwork for zoysiagrass improvement and breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信