{"title":"基于双鉴别gan的作物病害图像合成,实现作物病害的精确识别。","authors":"Chao Wang, Yuting Xia, Lunlong Xia, Qingyong Wang, Lichuan Gu","doi":"10.1186/s13007-025-01361-0","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning-based computer vision technology significantly improves the accuracy and efficiency of crop disease detection. However, the scarcity of crop disease images leads to insufficient training data, limiting the accuracy of disease recognition and the generalization ability of deep learning models. Therefore, increasing the number and diversity of high-quality disease images is crucial for enhancing disease monitoring performance. We design a frequency-domain and wavelet image augmentation network with a dual discriminator structure (FHWD). The first discriminator distinguishes between real and generated images, while the second high-frequency discriminator is specifically used to distinguish between the high-frequency components of both. High-frequency details play a crucial role in the sharpness, texture, and fine-grained structures of an image, which are essential for realistic image generation. During training, we combine the proposed wavelet loss and Fast Fourier Transform loss functions. These loss functions guide the model to focus on image details through multi-band constraints and frequency domain transformation, improving the authenticity of lesions and textures, thereby enhancing the visual quality of the generated images. We compare the generation performance of different models on ten crop diseases from the PlantVillage dataset. The experimental results show that the images generated by FHWD contain more realistic leaf disease lesions, with higher image quality that better aligns with human visual perception. Additionally, in classification tasks involving nine types of tomato leaf diseases from the PlantVillage dataset, FHWD-enhanced data improve classification accuracy by an average of 7.25% for VGG16, GoogleNet, and ResNet18 models.Our results show that FHWD is an effective image augmentation tool that effectively addresses the scarcity of crop disease images and provides more diverse and enriched training data for disease recognition models.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"46"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955132/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual discriminator GAN-based synthetic crop disease image generation for precise crop disease identification.\",\"authors\":\"Chao Wang, Yuting Xia, Lunlong Xia, Qingyong Wang, Lichuan Gu\",\"doi\":\"10.1186/s13007-025-01361-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning-based computer vision technology significantly improves the accuracy and efficiency of crop disease detection. However, the scarcity of crop disease images leads to insufficient training data, limiting the accuracy of disease recognition and the generalization ability of deep learning models. Therefore, increasing the number and diversity of high-quality disease images is crucial for enhancing disease monitoring performance. We design a frequency-domain and wavelet image augmentation network with a dual discriminator structure (FHWD). The first discriminator distinguishes between real and generated images, while the second high-frequency discriminator is specifically used to distinguish between the high-frequency components of both. High-frequency details play a crucial role in the sharpness, texture, and fine-grained structures of an image, which are essential for realistic image generation. During training, we combine the proposed wavelet loss and Fast Fourier Transform loss functions. These loss functions guide the model to focus on image details through multi-band constraints and frequency domain transformation, improving the authenticity of lesions and textures, thereby enhancing the visual quality of the generated images. We compare the generation performance of different models on ten crop diseases from the PlantVillage dataset. The experimental results show that the images generated by FHWD contain more realistic leaf disease lesions, with higher image quality that better aligns with human visual perception. Additionally, in classification tasks involving nine types of tomato leaf diseases from the PlantVillage dataset, FHWD-enhanced data improve classification accuracy by an average of 7.25% for VGG16, GoogleNet, and ResNet18 models.Our results show that FHWD is an effective image augmentation tool that effectively addresses the scarcity of crop disease images and provides more diverse and enriched training data for disease recognition models.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"46\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955132/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01361-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01361-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deep learning-based computer vision technology significantly improves the accuracy and efficiency of crop disease detection. However, the scarcity of crop disease images leads to insufficient training data, limiting the accuracy of disease recognition and the generalization ability of deep learning models. Therefore, increasing the number and diversity of high-quality disease images is crucial for enhancing disease monitoring performance. We design a frequency-domain and wavelet image augmentation network with a dual discriminator structure (FHWD). The first discriminator distinguishes between real and generated images, while the second high-frequency discriminator is specifically used to distinguish between the high-frequency components of both. High-frequency details play a crucial role in the sharpness, texture, and fine-grained structures of an image, which are essential for realistic image generation. During training, we combine the proposed wavelet loss and Fast Fourier Transform loss functions. These loss functions guide the model to focus on image details through multi-band constraints and frequency domain transformation, improving the authenticity of lesions and textures, thereby enhancing the visual quality of the generated images. We compare the generation performance of different models on ten crop diseases from the PlantVillage dataset. The experimental results show that the images generated by FHWD contain more realistic leaf disease lesions, with higher image quality that better aligns with human visual perception. Additionally, in classification tasks involving nine types of tomato leaf diseases from the PlantVillage dataset, FHWD-enhanced data improve classification accuracy by an average of 7.25% for VGG16, GoogleNet, and ResNet18 models.Our results show that FHWD is an effective image augmentation tool that effectively addresses the scarcity of crop disease images and provides more diverse and enriched training data for disease recognition models.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.