Z Ouyang, E M B Fahmy, D Colucci, A A Yimam, J Van Campenhout, B Kunert, D Van Thourhout
{"title":"在300毫米硅衬底上生长的超紧凑InGaAs/GaAs纳米脊激光器。","authors":"Z Ouyang, E M B Fahmy, D Colucci, A A Yimam, J Van Campenhout, B Kunert, D Van Thourhout","doi":"10.1364/OL.555718","DOIUrl":null,"url":null,"abstract":"<p><p>Compact and low-threshold III-V semiconductor lasers are considered to be promising light sources for the silicon photonics platform, as they could offer a small footprint and low energy consumption. However, the significant lattice mismatch between III-V materials and silicon poses a fundamental challenge for the monolithic integration of such lasers on a silicon substrate. Using aspect ratio trapping and nano-ridge engineering, it has been shown this challenge can be overcome. However, thus far, only devices with cavity lengths of several hundred micrometers have shown a laser operation. Here, we show what we believe to be a novel approach whereby an amorphous silicon grating is deposited on the sidewalls of the nano-ridge, allowing for much stronger feedback and much shorter cavity lengths. Based on this approach, we achieved lasing with a threshold density of 9.9 kW/cm<sup>2</sup> under pulsed optical pumping, for a device with a cavity length as small as ∼16 µm. The side-mode suppression ratio and linewidth of the laser reach 24 dB and 1.25 nm under 25 kW/cm<sup>2</sup>. This laser not only demonstrates the high quality of the epitaxial material but also establishes a novel route to realize an ultra-compact electrically driven light source for future high-density and massively scalable silicon photonic integrated circuits.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2358-2361"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-compact InGaAs/GaAs nano-ridge laser monolithically grown on 300 mm silicon substrate.\",\"authors\":\"Z Ouyang, E M B Fahmy, D Colucci, A A Yimam, J Van Campenhout, B Kunert, D Van Thourhout\",\"doi\":\"10.1364/OL.555718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compact and low-threshold III-V semiconductor lasers are considered to be promising light sources for the silicon photonics platform, as they could offer a small footprint and low energy consumption. However, the significant lattice mismatch between III-V materials and silicon poses a fundamental challenge for the monolithic integration of such lasers on a silicon substrate. Using aspect ratio trapping and nano-ridge engineering, it has been shown this challenge can be overcome. However, thus far, only devices with cavity lengths of several hundred micrometers have shown a laser operation. Here, we show what we believe to be a novel approach whereby an amorphous silicon grating is deposited on the sidewalls of the nano-ridge, allowing for much stronger feedback and much shorter cavity lengths. Based on this approach, we achieved lasing with a threshold density of 9.9 kW/cm<sup>2</sup> under pulsed optical pumping, for a device with a cavity length as small as ∼16 µm. The side-mode suppression ratio and linewidth of the laser reach 24 dB and 1.25 nm under 25 kW/cm<sup>2</sup>. This laser not only demonstrates the high quality of the epitaxial material but also establishes a novel route to realize an ultra-compact electrically driven light source for future high-density and massively scalable silicon photonic integrated circuits.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 7\",\"pages\":\"2358-2361\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.555718\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.555718","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Ultra-compact InGaAs/GaAs nano-ridge laser monolithically grown on 300 mm silicon substrate.
Compact and low-threshold III-V semiconductor lasers are considered to be promising light sources for the silicon photonics platform, as they could offer a small footprint and low energy consumption. However, the significant lattice mismatch between III-V materials and silicon poses a fundamental challenge for the monolithic integration of such lasers on a silicon substrate. Using aspect ratio trapping and nano-ridge engineering, it has been shown this challenge can be overcome. However, thus far, only devices with cavity lengths of several hundred micrometers have shown a laser operation. Here, we show what we believe to be a novel approach whereby an amorphous silicon grating is deposited on the sidewalls of the nano-ridge, allowing for much stronger feedback and much shorter cavity lengths. Based on this approach, we achieved lasing with a threshold density of 9.9 kW/cm2 under pulsed optical pumping, for a device with a cavity length as small as ∼16 µm. The side-mode suppression ratio and linewidth of the laser reach 24 dB and 1.25 nm under 25 kW/cm2. This laser not only demonstrates the high quality of the epitaxial material but also establishes a novel route to realize an ultra-compact electrically driven light source for future high-density and massively scalable silicon photonic integrated circuits.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.