滚动相位动态全场OCT。

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-04-01 DOI:10.1364/OL.543474
Tual Monfort, Kate Grieve, Olivier Thouvenin
{"title":"滚动相位动态全场OCT。","authors":"Tual Monfort, Kate Grieve, Olivier Thouvenin","doi":"10.1364/OL.543474","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic full-field optical coherence tomography (DFFOCT) has recently emerged as an invaluable label-free microscopy technique, owing to its sensitivity to cell activity, as well as speed and sectioning ability. However, the quality of DFFOCT images is often degraded due to phase noise and fringe artifacts. In this work, we present a new implementation, to the best of our knowledge, named rolling-phase (RP) DFFOCT, in which the reference arm is slowly scanned over magnitudes exceeding 2<i>π</i>. We demonstrate mathematically and experimentally that it shows superior image quality while enabling to extract both static and dynamic contrast simultaneously. We showcase RP-DFFOCT on a macaque retinal explant and demonstrate its ability to better resolve subcellular structures, including intranuclear activity.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2239-2242"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rolling-phase dynamic full-field OCT.\",\"authors\":\"Tual Monfort, Kate Grieve, Olivier Thouvenin\",\"doi\":\"10.1364/OL.543474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic full-field optical coherence tomography (DFFOCT) has recently emerged as an invaluable label-free microscopy technique, owing to its sensitivity to cell activity, as well as speed and sectioning ability. However, the quality of DFFOCT images is often degraded due to phase noise and fringe artifacts. In this work, we present a new implementation, to the best of our knowledge, named rolling-phase (RP) DFFOCT, in which the reference arm is slowly scanned over magnitudes exceeding 2<i>π</i>. We demonstrate mathematically and experimentally that it shows superior image quality while enabling to extract both static and dynamic contrast simultaneously. We showcase RP-DFFOCT on a macaque retinal explant and demonstrate its ability to better resolve subcellular structures, including intranuclear activity.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 7\",\"pages\":\"2239-2242\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.543474\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.543474","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

动态全场光学相干断层成像(DFFOCT)对细胞活动非常敏感,而且速度快、切片能力强,因此最近已成为一种宝贵的无标记显微镜技术。然而,由于相位噪声和边缘伪影的存在,DFFOCT 图像的质量往往会下降。在这项工作中,我们提出了一种新的实现方法,据我们所知,它被命名为滚动相位(RP)DFFOCT,其中参考臂在幅度超过 2π 时缓慢扫描。我们通过数学和实验证明,这种方法在同时提取静态和动态对比度的同时,还能显示出卓越的图像质量。我们在猕猴视网膜切片上展示了 RP-DFFOCT,并证明它能更好地分辨亚细胞结构,包括核内活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rolling-phase dynamic full-field OCT.

Dynamic full-field optical coherence tomography (DFFOCT) has recently emerged as an invaluable label-free microscopy technique, owing to its sensitivity to cell activity, as well as speed and sectioning ability. However, the quality of DFFOCT images is often degraded due to phase noise and fringe artifacts. In this work, we present a new implementation, to the best of our knowledge, named rolling-phase (RP) DFFOCT, in which the reference arm is slowly scanned over magnitudes exceeding 2π. We demonstrate mathematically and experimentally that it shows superior image quality while enabling to extract both static and dynamic contrast simultaneously. We showcase RP-DFFOCT on a macaque retinal explant and demonstrate its ability to better resolve subcellular structures, including intranuclear activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信