Daniel Schiwietz, Marian Hörsting, Eva Maria Weig, Matthias Wenzel, Peter Degenfeld-Schonburg
{"title":"几何非线性模态耦合系数的形状优化:在MEMS陀螺仪上的应用。","authors":"Daniel Schiwietz, Marian Hörsting, Eva Maria Weig, Matthias Wenzel, Peter Degenfeld-Schonburg","doi":"10.1038/s41598-025-95412-0","DOIUrl":null,"url":null,"abstract":"<p><p>Micro- and nanoelectromechanical system (MEMS and NEMS) resonators can exhibit rich nonlinear dynamics as they are often operated at large amplitudes with high quality factors and possess a high mode density with a variety of nonlinear modal couplings. Their impact is strongly influenced by internal resonance conditions and by the strength of the modal coupling coefficients. On one hand, strong nonlinear couplings are of academic interest and promise novel device concepts. On the other hand, however, they have the potential to disturb the linear system behavior on which industrial devices such as gyroscopes and micro mirrors are based. In either case, being able to optimize the coupling coefficients by design is certainly beneficial. A main source of nonlinear modal couplings are geometric nonlinearities. In this work, we apply node-based shape optimization to tune the geometrically nonlinear 3-wave coupling coefficients of a MEMS gyroscope. We demonstrate that individual coupling coefficients can be tuned over several orders of magnitude by shape optimization, while satisfying typical constraints on manufacturability and operability of the devices. The optimized designs contain unintuitive geometrical features far away from any solution an experienced human MEMS or NEMS designer could have thought of. Thus, this work demonstrates the power of shape optimization for tailoring the complex nonlinear dynamic properties of MEMS and NEMS resonators.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10957"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958727/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shape optimization of geometrically nonlinear modal coupling coefficients: an application to MEMS gyroscopes.\",\"authors\":\"Daniel Schiwietz, Marian Hörsting, Eva Maria Weig, Matthias Wenzel, Peter Degenfeld-Schonburg\",\"doi\":\"10.1038/s41598-025-95412-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro- and nanoelectromechanical system (MEMS and NEMS) resonators can exhibit rich nonlinear dynamics as they are often operated at large amplitudes with high quality factors and possess a high mode density with a variety of nonlinear modal couplings. Their impact is strongly influenced by internal resonance conditions and by the strength of the modal coupling coefficients. On one hand, strong nonlinear couplings are of academic interest and promise novel device concepts. On the other hand, however, they have the potential to disturb the linear system behavior on which industrial devices such as gyroscopes and micro mirrors are based. In either case, being able to optimize the coupling coefficients by design is certainly beneficial. A main source of nonlinear modal couplings are geometric nonlinearities. In this work, we apply node-based shape optimization to tune the geometrically nonlinear 3-wave coupling coefficients of a MEMS gyroscope. We demonstrate that individual coupling coefficients can be tuned over several orders of magnitude by shape optimization, while satisfying typical constraints on manufacturability and operability of the devices. The optimized designs contain unintuitive geometrical features far away from any solution an experienced human MEMS or NEMS designer could have thought of. Thus, this work demonstrates the power of shape optimization for tailoring the complex nonlinear dynamic properties of MEMS and NEMS resonators.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10957\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95412-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95412-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Shape optimization of geometrically nonlinear modal coupling coefficients: an application to MEMS gyroscopes.
Micro- and nanoelectromechanical system (MEMS and NEMS) resonators can exhibit rich nonlinear dynamics as they are often operated at large amplitudes with high quality factors and possess a high mode density with a variety of nonlinear modal couplings. Their impact is strongly influenced by internal resonance conditions and by the strength of the modal coupling coefficients. On one hand, strong nonlinear couplings are of academic interest and promise novel device concepts. On the other hand, however, they have the potential to disturb the linear system behavior on which industrial devices such as gyroscopes and micro mirrors are based. In either case, being able to optimize the coupling coefficients by design is certainly beneficial. A main source of nonlinear modal couplings are geometric nonlinearities. In this work, we apply node-based shape optimization to tune the geometrically nonlinear 3-wave coupling coefficients of a MEMS gyroscope. We demonstrate that individual coupling coefficients can be tuned over several orders of magnitude by shape optimization, while satisfying typical constraints on manufacturability and operability of the devices. The optimized designs contain unintuitive geometrical features far away from any solution an experienced human MEMS or NEMS designer could have thought of. Thus, this work demonstrates the power of shape optimization for tailoring the complex nonlinear dynamic properties of MEMS and NEMS resonators.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.