Leonardo Martins Carneiro, Diego Ulysses Melo, Calvin Quessada Cabello, Paula Homem-de-Mello, Fabio Furlan Ferreira, Fernando Heering Bartoloni
{"title":"当在水/乙腈混合物中发生聚集时,三重态培育了含氯四苯基咪唑衍生物在室温下的长寿命释放。","authors":"Leonardo Martins Carneiro, Diego Ulysses Melo, Calvin Quessada Cabello, Paula Homem-de-Mello, Fabio Furlan Ferreira, Fernando Heering Bartoloni","doi":"10.1111/php.14096","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there have been numerous reports on the synthesis and applications of 1,2,4,5-tetraphenylimidazole (TEPI) derivatives, particularly due to the photophysical properties of such systems. However, the long-lived emission behavior of TEPIs has not been studied, with research largely limited to attempts at 77 K. In this study, the compound 1-(4-chlorophenyl)-2,4,5-triphenyl-1H-imidazole (TEPI-Cl) was prepared and characterized using experimental techniques (i.e., absorption spectra, steady-state, and long-lived emission), as well as computationally, using a combination of Extended Tight Binding (xTB), Density Functional Theory (DFT), and Time-Dependent (TD-DFT) methods. TEPI-Cl exhibited a low solvatochromic effect, both in absorption and steady-state emission in organic solvents, which is typical of a locally excited transition; this was confirmed by the performed calculations. However, in its aggregated state (observed in water/acetonitrile mixtures with >80% of water, in volume), the compound displayed the emergence of a new band in the absorption spectrum, as well as aggregate-induced enhanced emission in the steady-state emission analysis. The long-lived emission spectrum of TEPI-Cl recorded at room temperature shows two signals (at 380 and 540 nm) and the presence of benzil enables the generation of triplet excited states of the latter, likely through an energy transfer process. The sensitivity of these signals to the presence of oxygen suggested that the related excited states are of a triplet nature; moreover, the calculated electronic transitions for the optimized structures of the T<sub>1</sub> and T<sub>2</sub> states are comparable to the experimentally observed long-lived emission wavelengths. This newly observed behavior of TEPI-Cl comes as a novel photophysical property added to this class of molecules, demonstrating its significant potential for further applications in complex matrices.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triplet states nurture the long-lived emission at room temperature of a chlorine-containing tetraphenylimidazole derivative when aggregation occurs in water/acetonitrile mixtures.\",\"authors\":\"Leonardo Martins Carneiro, Diego Ulysses Melo, Calvin Quessada Cabello, Paula Homem-de-Mello, Fabio Furlan Ferreira, Fernando Heering Bartoloni\",\"doi\":\"10.1111/php.14096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, there have been numerous reports on the synthesis and applications of 1,2,4,5-tetraphenylimidazole (TEPI) derivatives, particularly due to the photophysical properties of such systems. However, the long-lived emission behavior of TEPIs has not been studied, with research largely limited to attempts at 77 K. In this study, the compound 1-(4-chlorophenyl)-2,4,5-triphenyl-1H-imidazole (TEPI-Cl) was prepared and characterized using experimental techniques (i.e., absorption spectra, steady-state, and long-lived emission), as well as computationally, using a combination of Extended Tight Binding (xTB), Density Functional Theory (DFT), and Time-Dependent (TD-DFT) methods. TEPI-Cl exhibited a low solvatochromic effect, both in absorption and steady-state emission in organic solvents, which is typical of a locally excited transition; this was confirmed by the performed calculations. However, in its aggregated state (observed in water/acetonitrile mixtures with >80% of water, in volume), the compound displayed the emergence of a new band in the absorption spectrum, as well as aggregate-induced enhanced emission in the steady-state emission analysis. The long-lived emission spectrum of TEPI-Cl recorded at room temperature shows two signals (at 380 and 540 nm) and the presence of benzil enables the generation of triplet excited states of the latter, likely through an energy transfer process. The sensitivity of these signals to the presence of oxygen suggested that the related excited states are of a triplet nature; moreover, the calculated electronic transitions for the optimized structures of the T<sub>1</sub> and T<sub>2</sub> states are comparable to the experimentally observed long-lived emission wavelengths. This newly observed behavior of TEPI-Cl comes as a novel photophysical property added to this class of molecules, demonstrating its significant potential for further applications in complex matrices.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.14096\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14096","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Triplet states nurture the long-lived emission at room temperature of a chlorine-containing tetraphenylimidazole derivative when aggregation occurs in water/acetonitrile mixtures.
In recent years, there have been numerous reports on the synthesis and applications of 1,2,4,5-tetraphenylimidazole (TEPI) derivatives, particularly due to the photophysical properties of such systems. However, the long-lived emission behavior of TEPIs has not been studied, with research largely limited to attempts at 77 K. In this study, the compound 1-(4-chlorophenyl)-2,4,5-triphenyl-1H-imidazole (TEPI-Cl) was prepared and characterized using experimental techniques (i.e., absorption spectra, steady-state, and long-lived emission), as well as computationally, using a combination of Extended Tight Binding (xTB), Density Functional Theory (DFT), and Time-Dependent (TD-DFT) methods. TEPI-Cl exhibited a low solvatochromic effect, both in absorption and steady-state emission in organic solvents, which is typical of a locally excited transition; this was confirmed by the performed calculations. However, in its aggregated state (observed in water/acetonitrile mixtures with >80% of water, in volume), the compound displayed the emergence of a new band in the absorption spectrum, as well as aggregate-induced enhanced emission in the steady-state emission analysis. The long-lived emission spectrum of TEPI-Cl recorded at room temperature shows two signals (at 380 and 540 nm) and the presence of benzil enables the generation of triplet excited states of the latter, likely through an energy transfer process. The sensitivity of these signals to the presence of oxygen suggested that the related excited states are of a triplet nature; moreover, the calculated electronic transitions for the optimized structures of the T1 and T2 states are comparable to the experimentally observed long-lived emission wavelengths. This newly observed behavior of TEPI-Cl comes as a novel photophysical property added to this class of molecules, demonstrating its significant potential for further applications in complex matrices.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.