电池型CuCo2O4/CoS纳米草阵列作为高性能超级电容器的无粘结剂高级电极材料。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chandu V V Muralee Gopi, Araveeti Eswar Reddy, Sunkara Srinivasa Rao, K V G Raghavendra, Maduru Suneetha, Hee-Je Kim, R Ramesh
{"title":"电池型CuCo2O4/CoS纳米草阵列作为高性能超级电容器的无粘结剂高级电极材料。","authors":"Chandu V V Muralee Gopi, Araveeti Eswar Reddy, Sunkara Srinivasa Rao, K V G Raghavendra, Maduru Suneetha, Hee-Je Kim, R Ramesh","doi":"10.1039/d5na00070j","DOIUrl":null,"url":null,"abstract":"<p><p>This study uses a facile one-step hydrothermal method to successfully synthesize hierarchical dandelion flower-like CuCo<sub>2</sub>O<sub>4</sub>/CoS structures on Ni foam. The composite exhibits a unique dandelion flower-like architecture comprising interconnected nanograss arrays (NGAs), resulting in a significantly higher surface area than individual CuCo<sub>2</sub>O<sub>4</sub> and CoS electrodes. Electrochemical characterization reveals that the CuCo<sub>2</sub>O<sub>4</sub>/CoS electrode exhibits superior electrochemical performance, demonstrating battery-type behavior with well-defined redox peaks in cyclic voltammetry and distinct plateaus in galvanostatic charge-discharge curves. The composite electrode delivers a high specific capacity of 217.86 mA h g<sup>-1</sup> at a current density of 6 mA cm<sup>-2</sup>, surpassing the performance of individual CuCo<sub>2</sub>O<sub>4</sub> (142.54 mA h g<sup>-1</sup>) and CoS (160.37 mA h g<sup>-1</sup>) electrodes. Moreover, the composite electrodes exhibit outstanding cycling life, retaining 86.23% of their initial capacity in over 3000 cycles. Electrochemical impedance spectroscopy analysis confirms lower charge transfer resistance and solution resistance for the composite electrode, indicating improved charge transfer kinetics and ion diffusion. These findings demonstrate that the hierarchical CuCo<sub>2</sub>O<sub>4</sub>/CoS composite holds significant promise as a high-performance battery-type electrode material for supercapacitor applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Battery-type CuCo<sub>2</sub>O<sub>4</sub>/CoS nanograss arrays as a binder-free advanced electrode material for high-performance supercapacitors.\",\"authors\":\"Chandu V V Muralee Gopi, Araveeti Eswar Reddy, Sunkara Srinivasa Rao, K V G Raghavendra, Maduru Suneetha, Hee-Je Kim, R Ramesh\",\"doi\":\"10.1039/d5na00070j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study uses a facile one-step hydrothermal method to successfully synthesize hierarchical dandelion flower-like CuCo<sub>2</sub>O<sub>4</sub>/CoS structures on Ni foam. The composite exhibits a unique dandelion flower-like architecture comprising interconnected nanograss arrays (NGAs), resulting in a significantly higher surface area than individual CuCo<sub>2</sub>O<sub>4</sub> and CoS electrodes. Electrochemical characterization reveals that the CuCo<sub>2</sub>O<sub>4</sub>/CoS electrode exhibits superior electrochemical performance, demonstrating battery-type behavior with well-defined redox peaks in cyclic voltammetry and distinct plateaus in galvanostatic charge-discharge curves. The composite electrode delivers a high specific capacity of 217.86 mA h g<sup>-1</sup> at a current density of 6 mA cm<sup>-2</sup>, surpassing the performance of individual CuCo<sub>2</sub>O<sub>4</sub> (142.54 mA h g<sup>-1</sup>) and CoS (160.37 mA h g<sup>-1</sup>) electrodes. Moreover, the composite electrodes exhibit outstanding cycling life, retaining 86.23% of their initial capacity in over 3000 cycles. Electrochemical impedance spectroscopy analysis confirms lower charge transfer resistance and solution resistance for the composite electrode, indicating improved charge transfer kinetics and ion diffusion. These findings demonstrate that the hierarchical CuCo<sub>2</sub>O<sub>4</sub>/CoS composite holds significant promise as a high-performance battery-type electrode material for supercapacitor applications.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00070j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00070j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用简单的一步水热法在Ni泡沫上成功合成了蒲公英花状CuCo2O4/CoS结构。该复合材料具有独特的蒲公英花状结构,由相互连接的纳米草阵列(NGAs)组成,其表面积明显高于单独的CuCo2O4和CoS电极。电化学表征表明,CuCo2O4/CoS电极具有优异的电化学性能,在循环伏安曲线上具有清晰的氧化还原峰,在恒流充放电曲线上具有明显的平台。该复合电极在电流密度为6 mA cm-2时的比容量高达217.86 mA h g-1,超过了单个CuCo2O4 (142.54 mA h g-1)和CoS (160.37 mA h g-1)电极的性能。此外,复合电极具有优异的循环寿命,在3000次循环中仍能保持86.23%的初始容量。电化学阻抗谱分析证实,复合电极的电荷转移电阻和溶液电阻降低,表明电荷转移动力学和离子扩散得到改善。这些发现表明,分层CuCo2O4/CoS复合材料作为超级电容器应用的高性能电池型电极材料具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Battery-type CuCo2O4/CoS nanograss arrays as a binder-free advanced electrode material for high-performance supercapacitors.

This study uses a facile one-step hydrothermal method to successfully synthesize hierarchical dandelion flower-like CuCo2O4/CoS structures on Ni foam. The composite exhibits a unique dandelion flower-like architecture comprising interconnected nanograss arrays (NGAs), resulting in a significantly higher surface area than individual CuCo2O4 and CoS electrodes. Electrochemical characterization reveals that the CuCo2O4/CoS electrode exhibits superior electrochemical performance, demonstrating battery-type behavior with well-defined redox peaks in cyclic voltammetry and distinct plateaus in galvanostatic charge-discharge curves. The composite electrode delivers a high specific capacity of 217.86 mA h g-1 at a current density of 6 mA cm-2, surpassing the performance of individual CuCo2O4 (142.54 mA h g-1) and CoS (160.37 mA h g-1) electrodes. Moreover, the composite electrodes exhibit outstanding cycling life, retaining 86.23% of their initial capacity in over 3000 cycles. Electrochemical impedance spectroscopy analysis confirms lower charge transfer resistance and solution resistance for the composite electrode, indicating improved charge transfer kinetics and ion diffusion. These findings demonstrate that the hierarchical CuCo2O4/CoS composite holds significant promise as a high-performance battery-type electrode material for supercapacitor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信