{"title":"代谢破坏化学物质对脂肪肝疾病进展的危险影响综述","authors":"Garam An, Jisoo Song, Wei Ying, Whasun Lim","doi":"10.1007/s13273-025-00521-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Given the global increase in obesity, metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health concern. Because the liver is the primary organ for xenobiotic metabolism, the impact of environmental stressors on liver homeostasis and MASLD has garnered significant interest over the past few decades. The concept of metabolism-disrupting chemicals (MDCs) has been introduced to underscore the importance of environmental factors in metabolic homeostasis. Recent epidemiological and biological studies suggest a causal link between exposure to MDCs and prevalence and progression of MASLD.</p><p><strong>Objective: </strong>This review aims to introduce the emerging concept of MDCs and their representative toxic mechanisms. In particular, this review focuses on broadening the understanding of their impacts on MASLD or metabolic dysfunction-associated steatohepatitis (MASH) progression.</p><p><strong>Result: </strong>Recent research has highlighted the environmental contaminants, such as heavy metals, microplastics, and pesticides, have the potential to influence hepatic metabolism and aggravate MASLD/MASH progression. These MDCs not only directly affect lipid metabolism in hepatocytes but also affect other cell types, such as immune cells and stellate cells, as well as the gut-liver axis.</p><p><strong>Conclusion: </strong>Collectively, these findings contribute to establishing a well-defined adverse outcome pathway and identify novel therapeutic options for liver diseases associated with pollutants.</p>","PeriodicalId":18683,"journal":{"name":"Molecular & Cellular Toxicology","volume":"21 2","pages":"387-397"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947047/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overview of the hazardous impacts of metabolism-disrupting chemicals on the progression of fatty liver diseases.\",\"authors\":\"Garam An, Jisoo Song, Wei Ying, Whasun Lim\",\"doi\":\"10.1007/s13273-025-00521-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Given the global increase in obesity, metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health concern. Because the liver is the primary organ for xenobiotic metabolism, the impact of environmental stressors on liver homeostasis and MASLD has garnered significant interest over the past few decades. The concept of metabolism-disrupting chemicals (MDCs) has been introduced to underscore the importance of environmental factors in metabolic homeostasis. Recent epidemiological and biological studies suggest a causal link between exposure to MDCs and prevalence and progression of MASLD.</p><p><strong>Objective: </strong>This review aims to introduce the emerging concept of MDCs and their representative toxic mechanisms. In particular, this review focuses on broadening the understanding of their impacts on MASLD or metabolic dysfunction-associated steatohepatitis (MASH) progression.</p><p><strong>Result: </strong>Recent research has highlighted the environmental contaminants, such as heavy metals, microplastics, and pesticides, have the potential to influence hepatic metabolism and aggravate MASLD/MASH progression. These MDCs not only directly affect lipid metabolism in hepatocytes but also affect other cell types, such as immune cells and stellate cells, as well as the gut-liver axis.</p><p><strong>Conclusion: </strong>Collectively, these findings contribute to establishing a well-defined adverse outcome pathway and identify novel therapeutic options for liver diseases associated with pollutants.</p>\",\"PeriodicalId\":18683,\"journal\":{\"name\":\"Molecular & Cellular Toxicology\",\"volume\":\"21 2\",\"pages\":\"387-397\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13273-025-00521-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13273-025-00521-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Overview of the hazardous impacts of metabolism-disrupting chemicals on the progression of fatty liver diseases.
Background: Given the global increase in obesity, metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health concern. Because the liver is the primary organ for xenobiotic metabolism, the impact of environmental stressors on liver homeostasis and MASLD has garnered significant interest over the past few decades. The concept of metabolism-disrupting chemicals (MDCs) has been introduced to underscore the importance of environmental factors in metabolic homeostasis. Recent epidemiological and biological studies suggest a causal link between exposure to MDCs and prevalence and progression of MASLD.
Objective: This review aims to introduce the emerging concept of MDCs and their representative toxic mechanisms. In particular, this review focuses on broadening the understanding of their impacts on MASLD or metabolic dysfunction-associated steatohepatitis (MASH) progression.
Result: Recent research has highlighted the environmental contaminants, such as heavy metals, microplastics, and pesticides, have the potential to influence hepatic metabolism and aggravate MASLD/MASH progression. These MDCs not only directly affect lipid metabolism in hepatocytes but also affect other cell types, such as immune cells and stellate cells, as well as the gut-liver axis.
Conclusion: Collectively, these findings contribute to establishing a well-defined adverse outcome pathway and identify novel therapeutic options for liver diseases associated with pollutants.
期刊介绍:
Molecular & Cellular Toxicology publishes original research and reviews in all areas of the complex interaction between the cell´s genome (the sum of all genes within the chromosome), chemicals in the environment, and disease. Acceptable manuscripts are the ones that deal with some topics of environmental contaminants, including those that lie in the domains of analytical chemistry, biochemistry, pharmacology and toxicology with the aspects of molecular and cellular levels. Emphasis will be placed on toxic effects observed at relevant genomics and proteomics, which have direct impact on drug development, environment health, food safety, preventive medicine, and forensic medicine. The journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.