{"title":"MicroRNA-335 通过抑制谷氨酰胺代谢途径抑制前列腺癌的侵袭和转移","authors":"Ziqi Chen, Hekang Ding, Yunlong Zhu, Shuai Sun, Zhenyu Song, Li Zhang, Chaozhao Liang, Lingfan Xu","doi":"10.1016/j.jpet.2024.100530","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs play a crucial role in regulating tumor progression and invasion. Nevertheless, the expression of miRNA-335 in prostate cancer (PCa) and its clinical significance remain unelucidated. Here, we report that miRNA-335 functions as a tumor suppressor by regulating expression of glutaminase 1 (GLS1), a key enzyme of glutamine metabolism pathway, in PCa. In this study, we show that the expression of miRNA-335 is downregulated in PCa tissues. The level of miRNA-335 is even lower in highly invasive PCa cell lines. Furthermore, enhancing the expression of miRNA-335 inhibits PCa cell migration and invasion in vitro. Additionally, we identify GLS1 as the downstream effector, governed by miRNA-335 via 3'-untranslated region, and the direct regulation is verified by dual luciferase reporter assay. MiRNA-335 interrupts glutamine catabolism by inhibiting GLS1 enzymatic activity. Overexpression of miRNA-335 markedly suppresses tumor growth of PCa in vivo. To sum up, our results indicate that miRNA-335 acts as a tumor suppressor and has an important role in restraining the metastasis of PCa cells by targeting GLS1. These discoveries indicate that miRNA-335 could serve as a new prospective therapeutic target for PCa. SIGNIFICANCE STATEMENT: miRNA-335, a metabolism-related microRNA, is a potential therapeutic target for prostate cancer by interfering with glutaminase 1 activity.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 3","pages":"100530"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNA-335 inhibits invasion and metastasis of prostate cancer by inhibiting glutamine metabolism pathway.\",\"authors\":\"Ziqi Chen, Hekang Ding, Yunlong Zhu, Shuai Sun, Zhenyu Song, Li Zhang, Chaozhao Liang, Lingfan Xu\",\"doi\":\"10.1016/j.jpet.2024.100530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs play a crucial role in regulating tumor progression and invasion. Nevertheless, the expression of miRNA-335 in prostate cancer (PCa) and its clinical significance remain unelucidated. Here, we report that miRNA-335 functions as a tumor suppressor by regulating expression of glutaminase 1 (GLS1), a key enzyme of glutamine metabolism pathway, in PCa. In this study, we show that the expression of miRNA-335 is downregulated in PCa tissues. The level of miRNA-335 is even lower in highly invasive PCa cell lines. Furthermore, enhancing the expression of miRNA-335 inhibits PCa cell migration and invasion in vitro. Additionally, we identify GLS1 as the downstream effector, governed by miRNA-335 via 3'-untranslated region, and the direct regulation is verified by dual luciferase reporter assay. MiRNA-335 interrupts glutamine catabolism by inhibiting GLS1 enzymatic activity. Overexpression of miRNA-335 markedly suppresses tumor growth of PCa in vivo. To sum up, our results indicate that miRNA-335 acts as a tumor suppressor and has an important role in restraining the metastasis of PCa cells by targeting GLS1. These discoveries indicate that miRNA-335 could serve as a new prospective therapeutic target for PCa. SIGNIFICANCE STATEMENT: miRNA-335, a metabolism-related microRNA, is a potential therapeutic target for prostate cancer by interfering with glutaminase 1 activity.</p>\",\"PeriodicalId\":16798,\"journal\":{\"name\":\"Journal of Pharmacology and Experimental Therapeutics\",\"volume\":\"392 3\",\"pages\":\"100530\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacology and Experimental Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpet.2024.100530\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpet.2024.100530","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
MicroRNA-335 inhibits invasion and metastasis of prostate cancer by inhibiting glutamine metabolism pathway.
MicroRNAs play a crucial role in regulating tumor progression and invasion. Nevertheless, the expression of miRNA-335 in prostate cancer (PCa) and its clinical significance remain unelucidated. Here, we report that miRNA-335 functions as a tumor suppressor by regulating expression of glutaminase 1 (GLS1), a key enzyme of glutamine metabolism pathway, in PCa. In this study, we show that the expression of miRNA-335 is downregulated in PCa tissues. The level of miRNA-335 is even lower in highly invasive PCa cell lines. Furthermore, enhancing the expression of miRNA-335 inhibits PCa cell migration and invasion in vitro. Additionally, we identify GLS1 as the downstream effector, governed by miRNA-335 via 3'-untranslated region, and the direct regulation is verified by dual luciferase reporter assay. MiRNA-335 interrupts glutamine catabolism by inhibiting GLS1 enzymatic activity. Overexpression of miRNA-335 markedly suppresses tumor growth of PCa in vivo. To sum up, our results indicate that miRNA-335 acts as a tumor suppressor and has an important role in restraining the metastasis of PCa cells by targeting GLS1. These discoveries indicate that miRNA-335 could serve as a new prospective therapeutic target for PCa. SIGNIFICANCE STATEMENT: miRNA-335, a metabolism-related microRNA, is a potential therapeutic target for prostate cancer by interfering with glutaminase 1 activity.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.