帕金森病的疾病特异性结构模式及其与基因功能相关的皮质特征:7 特斯拉磁共振成像研究。

IF 4.8 2区 医学 Q1 CLINICAL NEUROLOGY
Xiaoyu Wang, Yongqin Xiong, Caohui Duan, Jianxing Hu, Haoxuan Lu, Mingliang Yang, Jiayu Huang, Yan Li, Zhixuan Li, Song Wang, Miao Wang, Xi Yin, Jing Zhao, Zhongbao Gao, Xin Lou
{"title":"帕金森病的疾病特异性结构模式及其与基因功能相关的皮质特征:7 特斯拉磁共振成像研究。","authors":"Xiaoyu Wang, Yongqin Xiong, Caohui Duan, Jianxing Hu, Haoxuan Lu, Mingliang Yang, Jiayu Huang, Yan Li, Zhixuan Li, Song Wang, Miao Wang, Xi Yin, Jing Zhao, Zhongbao Gao, Xin Lou","doi":"10.1007/s00415-025-13035-x","DOIUrl":null,"url":null,"abstract":"<p><p>Brain structure characteristics form the basis on regulating neuroplastic processes by genes, and structural alterations may contribute to the progression of Parkinson's disease (PD) and their divergent clinical manifestations. However, the neural mechanisms underlying the relations between the genetic signatures to structural alterations in PD patients are unclear. This study aimed to integrate alterations in cortical thickness and subcortical nuclei volume (thalamus, hippocampus, and amygdala) in PD, and to explore global cortical thickness differences associated with gene function. 7-Tesla magnetic resonance imaging scans were obtained for 98 patients with PD and 74 healthy controls (HC). Cortical thickness and subcortical nuclei volume were extracted based on FreeSurfer and were analyzed using general linear model to find significant differences between two groups. Regression model was used for cross-sectional the impact of structural alterations on motor signs as well as non-motor symptoms. Gene-imaging association analysis was used to characterize its gene signatures. Compared with HC, PD patients exhibited the disease-specific structural pattern, characterized by reduced cortical thickness in the right pars triangularis and altered volumes of specific nuclei subfields. Moreover, the Cornu Ammonis 1 head volume was significantly correlated with rigidity scores. Using human brain gene expression data, genes identified in this study were enriched for ribosome and synaptic organization and explain significant variation in global cortical thickness differences. Taken together, these findings may contribute to a better understanding of neural mechanisms in PD and the functional roles of genes that influence brain structure.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 4","pages":"300"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The disease-specific structural pattern in Parkinson's disease and its cortical characteristics associated with gene function: a 7-Tesla MRI study.\",\"authors\":\"Xiaoyu Wang, Yongqin Xiong, Caohui Duan, Jianxing Hu, Haoxuan Lu, Mingliang Yang, Jiayu Huang, Yan Li, Zhixuan Li, Song Wang, Miao Wang, Xi Yin, Jing Zhao, Zhongbao Gao, Xin Lou\",\"doi\":\"10.1007/s00415-025-13035-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain structure characteristics form the basis on regulating neuroplastic processes by genes, and structural alterations may contribute to the progression of Parkinson's disease (PD) and their divergent clinical manifestations. However, the neural mechanisms underlying the relations between the genetic signatures to structural alterations in PD patients are unclear. This study aimed to integrate alterations in cortical thickness and subcortical nuclei volume (thalamus, hippocampus, and amygdala) in PD, and to explore global cortical thickness differences associated with gene function. 7-Tesla magnetic resonance imaging scans were obtained for 98 patients with PD and 74 healthy controls (HC). Cortical thickness and subcortical nuclei volume were extracted based on FreeSurfer and were analyzed using general linear model to find significant differences between two groups. Regression model was used for cross-sectional the impact of structural alterations on motor signs as well as non-motor symptoms. Gene-imaging association analysis was used to characterize its gene signatures. Compared with HC, PD patients exhibited the disease-specific structural pattern, characterized by reduced cortical thickness in the right pars triangularis and altered volumes of specific nuclei subfields. Moreover, the Cornu Ammonis 1 head volume was significantly correlated with rigidity scores. Using human brain gene expression data, genes identified in this study were enriched for ribosome and synaptic organization and explain significant variation in global cortical thickness differences. Taken together, these findings may contribute to a better understanding of neural mechanisms in PD and the functional roles of genes that influence brain structure.</p>\",\"PeriodicalId\":16558,\"journal\":{\"name\":\"Journal of Neurology\",\"volume\":\"272 4\",\"pages\":\"300\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00415-025-13035-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-025-13035-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The disease-specific structural pattern in Parkinson's disease and its cortical characteristics associated with gene function: a 7-Tesla MRI study.

Brain structure characteristics form the basis on regulating neuroplastic processes by genes, and structural alterations may contribute to the progression of Parkinson's disease (PD) and their divergent clinical manifestations. However, the neural mechanisms underlying the relations between the genetic signatures to structural alterations in PD patients are unclear. This study aimed to integrate alterations in cortical thickness and subcortical nuclei volume (thalamus, hippocampus, and amygdala) in PD, and to explore global cortical thickness differences associated with gene function. 7-Tesla magnetic resonance imaging scans were obtained for 98 patients with PD and 74 healthy controls (HC). Cortical thickness and subcortical nuclei volume were extracted based on FreeSurfer and were analyzed using general linear model to find significant differences between two groups. Regression model was used for cross-sectional the impact of structural alterations on motor signs as well as non-motor symptoms. Gene-imaging association analysis was used to characterize its gene signatures. Compared with HC, PD patients exhibited the disease-specific structural pattern, characterized by reduced cortical thickness in the right pars triangularis and altered volumes of specific nuclei subfields. Moreover, the Cornu Ammonis 1 head volume was significantly correlated with rigidity scores. Using human brain gene expression data, genes identified in this study were enriched for ribosome and synaptic organization and explain significant variation in global cortical thickness differences. Taken together, these findings may contribute to a better understanding of neural mechanisms in PD and the functional roles of genes that influence brain structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurology
Journal of Neurology 医学-临床神经学
CiteScore
10.00
自引率
5.00%
发文量
558
审稿时长
1 months
期刊介绍: The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field. In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials. Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信