计算机三光子显微镜下的脑深部结构成像。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-03-29 DOI:10.1117/1.JBO.30.4.046002
Lingmei Chen, Mubin He, Lu Yang, Lingxi Zhou, Shuhao Qian, Chuncheng Wang, Rushan Jiang, Zhihua Ding, Jun Qian, Zhiyi Liu
{"title":"计算机三光子显微镜下的脑深部结构成像。","authors":"Lingmei Chen, Mubin He, Lu Yang, Lingxi Zhou, Shuhao Qian, Chuncheng Wang, Rushan Jiang, Zhihua Ding, Jun Qian, Zhiyi Liu","doi":"10.1117/1.JBO.30.4.046002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>High-resolution optical imaging at significant depths is challenging due to scattering, which impairs image quality in living matter with complex structures. We address the need for improved imaging techniques in deep tissues.</p><p><strong>Aim: </strong>We aim to develop a computational deep three-photon microscopy (3PM) method that enhances image quality without compromising acquisition speed, increasing excitation power, or adding extra optical components.</p><p><strong>Approach: </strong>We introduce a method called low-rank diffusion model (LRDM)-3PM, which utilizes customized aggregation-induced emission nanoprobes and self-supervised deep learning. This approach leverages superficial information from three-dimensional (3D) images to compensate for scattering and structured noise from the imaging system.</p><p><strong>Results: </strong>LRDM-3PM achieves a remarkable signal-to-background ratio above 100 even at depths of 1.5 mm, enabling the imaging of the hippocampus in live mouse brains. It integrates with a multiparametric analysis platform for resolving morpho-structural features of brain vasculature in a completely 3D manner, accurately recognizing distinct brain regions.</p><p><strong>Conclusions: </strong>LRDM-3PM demonstrates the potential for minimally invasive <i>in vivo</i> imaging and analysis, offering a significant advancement in the field of deep tissue imaging by maintaining high-resolution quality at unprecedented depths.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046002"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep structural brain imaging via computational three-photon microscopy.\",\"authors\":\"Lingmei Chen, Mubin He, Lu Yang, Lingxi Zhou, Shuhao Qian, Chuncheng Wang, Rushan Jiang, Zhihua Ding, Jun Qian, Zhiyi Liu\",\"doi\":\"10.1117/1.JBO.30.4.046002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>High-resolution optical imaging at significant depths is challenging due to scattering, which impairs image quality in living matter with complex structures. We address the need for improved imaging techniques in deep tissues.</p><p><strong>Aim: </strong>We aim to develop a computational deep three-photon microscopy (3PM) method that enhances image quality without compromising acquisition speed, increasing excitation power, or adding extra optical components.</p><p><strong>Approach: </strong>We introduce a method called low-rank diffusion model (LRDM)-3PM, which utilizes customized aggregation-induced emission nanoprobes and self-supervised deep learning. This approach leverages superficial information from three-dimensional (3D) images to compensate for scattering and structured noise from the imaging system.</p><p><strong>Results: </strong>LRDM-3PM achieves a remarkable signal-to-background ratio above 100 even at depths of 1.5 mm, enabling the imaging of the hippocampus in live mouse brains. It integrates with a multiparametric analysis platform for resolving morpho-structural features of brain vasculature in a completely 3D manner, accurately recognizing distinct brain regions.</p><p><strong>Conclusions: </strong>LRDM-3PM demonstrates the potential for minimally invasive <i>in vivo</i> imaging and analysis, offering a significant advancement in the field of deep tissue imaging by maintaining high-resolution quality at unprecedented depths.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 4\",\"pages\":\"046002\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.4.046002\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.4.046002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:在具有复杂结构的生物物质中,高分辨率光学成像由于散射而具有挑战性,从而降低了图像质量。我们解决了对改进深层组织成像技术的需求。目的:我们的目标是开发一种计算深度三光子显微镜(3PM)方法,在不影响采集速度、增加激发功率或增加额外光学元件的情况下提高图像质量。方法:我们引入了一种称为低秩扩散模型(LRDM)-3PM的方法,该方法利用定制的聚集诱导发射纳米探针和自监督深度学习。这种方法利用三维(3D)图像的表面信息来补偿成像系统的散射和结构化噪声。结果:LRDM-3PM即使在1.5 mm的深度下也能达到100以上的显著的信号背景比,能够对活体小鼠大脑中的海马进行成像。它集成了一个多参数分析平台,以完全3D的方式解析脑血管的形态结构特征,准确识别不同的大脑区域。结论:LRDM-3PM显示了微创体内成像和分析的潜力,通过在前所未有的深度保持高分辨率质量,在深部组织成像领域取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep structural brain imaging via computational three-photon microscopy.

Significance: High-resolution optical imaging at significant depths is challenging due to scattering, which impairs image quality in living matter with complex structures. We address the need for improved imaging techniques in deep tissues.

Aim: We aim to develop a computational deep three-photon microscopy (3PM) method that enhances image quality without compromising acquisition speed, increasing excitation power, or adding extra optical components.

Approach: We introduce a method called low-rank diffusion model (LRDM)-3PM, which utilizes customized aggregation-induced emission nanoprobes and self-supervised deep learning. This approach leverages superficial information from three-dimensional (3D) images to compensate for scattering and structured noise from the imaging system.

Results: LRDM-3PM achieves a remarkable signal-to-background ratio above 100 even at depths of 1.5 mm, enabling the imaging of the hippocampus in live mouse brains. It integrates with a multiparametric analysis platform for resolving morpho-structural features of brain vasculature in a completely 3D manner, accurately recognizing distinct brain regions.

Conclusions: LRDM-3PM demonstrates the potential for minimally invasive in vivo imaging and analysis, offering a significant advancement in the field of deep tissue imaging by maintaining high-resolution quality at unprecedented depths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信