动作探测光谱学中的光谱-时间对称性:在大系统中突出激发态动力学。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
K Charvátová, P Malý
{"title":"动作探测光谱学中的光谱-时间对称性:在大系统中突出激发态动力学。","authors":"K Charvátová, P Malý","doi":"10.1063/5.0255316","DOIUrl":null,"url":null,"abstract":"<p><p>Multidimensional optical spectroscopy observes transient excitation dynamics through time evolution of spectral correlations. Its action-detected variants offer several advantages over the coherent detection and are thus becoming increasingly widespread. Nevertheless, a drawback of action-detected spectra is the presence of a stationary background of the so-called incoherent mixing of excitations from independent states that resembles a product of ground-state absorption spectra and obscures the excited-state signal. This issue is especially problematic in fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) and fluorescence-detected pump-probe spectroscopy (F-PP) of extended systems, where large incoherent mixing arises from efficient exciton-exciton annihilation. In this work, we demonstrate on the example of F-2DES and F-PP an inherent spectro-temporal symmetry of action-detected spectra, which allows general, system-independent subtraction of any stationary signals including incoherent mixing. We derive the expressions for spectra with normal and reversed time ordering of the pulses, relating these to the symmetry of the system response. As we show both analytically and numerically, the difference signal constructed from spectra with normal and reversed pulse ordering is free of incoherent mixing and highlights the excited-state dynamics. We further verify the approach on the experimental F-PP spectra of a molecular squaraine heterodimer and the F-2DES spectra of the photosynthetic antenna light-harvesting complex 2 of purple bacteria. The approach is generally applicable to action-detected 2DES and pump-probe spectroscopy without experimental modifications and is independent of the studied system, enabling their application to large systems such as molecular complexes.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectro-temporal symmetry in action-detected optical spectroscopy: Highlighting excited-state dynamics in large systems.\",\"authors\":\"K Charvátová, P Malý\",\"doi\":\"10.1063/5.0255316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidimensional optical spectroscopy observes transient excitation dynamics through time evolution of spectral correlations. Its action-detected variants offer several advantages over the coherent detection and are thus becoming increasingly widespread. Nevertheless, a drawback of action-detected spectra is the presence of a stationary background of the so-called incoherent mixing of excitations from independent states that resembles a product of ground-state absorption spectra and obscures the excited-state signal. This issue is especially problematic in fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) and fluorescence-detected pump-probe spectroscopy (F-PP) of extended systems, where large incoherent mixing arises from efficient exciton-exciton annihilation. In this work, we demonstrate on the example of F-2DES and F-PP an inherent spectro-temporal symmetry of action-detected spectra, which allows general, system-independent subtraction of any stationary signals including incoherent mixing. We derive the expressions for spectra with normal and reversed time ordering of the pulses, relating these to the symmetry of the system response. As we show both analytically and numerically, the difference signal constructed from spectra with normal and reversed pulse ordering is free of incoherent mixing and highlights the excited-state dynamics. We further verify the approach on the experimental F-PP spectra of a molecular squaraine heterodimer and the F-2DES spectra of the photosynthetic antenna light-harvesting complex 2 of purple bacteria. The approach is generally applicable to action-detected 2DES and pump-probe spectroscopy without experimental modifications and is independent of the studied system, enabling their application to large systems such as molecular complexes.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 12\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0255316\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0255316","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多维光谱学通过光谱相关性的时间演化来观察瞬态激发动力学。它的动作检测变体提供了几个优于相干检测的优点,因此变得越来越普遍。然而,动作检测光谱的一个缺点是存在一个固定背景,即来自独立状态的所谓非相干混合激发,类似于基态吸收光谱的产物,并模糊了激发态信号。这个问题在荧光探测二维电子光谱(F-2DES)和荧光探测泵-探针光谱(F-PP)的扩展系统中尤其成问题,其中大量的非相干混合是由有效的激子-激子湮灭引起的。在这项工作中,我们在F-2DES和F-PP的例子中证明了动作检测光谱的固有光谱-时间对称性,它允许对包括非相干混合在内的任何平稳信号进行一般的、系统无关的减法。我们推导了脉冲正反时阶谱的表达式,并将其与系统响应的对称性联系起来。分析和数值结果表明,由正序和反序脉冲谱构成的差分信号没有非相干混合,突出了激发态动力学。我们进一步验证了该方法的实验F-PP光谱和紫色细菌的光合天线捕光复合物2的F-2DES光谱。该方法一般适用于动作检测的2DES和泵浦探针光谱,无需实验修改,并且独立于所研究的系统,使其能够应用于分子复合物等大型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectro-temporal symmetry in action-detected optical spectroscopy: Highlighting excited-state dynamics in large systems.

Multidimensional optical spectroscopy observes transient excitation dynamics through time evolution of spectral correlations. Its action-detected variants offer several advantages over the coherent detection and are thus becoming increasingly widespread. Nevertheless, a drawback of action-detected spectra is the presence of a stationary background of the so-called incoherent mixing of excitations from independent states that resembles a product of ground-state absorption spectra and obscures the excited-state signal. This issue is especially problematic in fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) and fluorescence-detected pump-probe spectroscopy (F-PP) of extended systems, where large incoherent mixing arises from efficient exciton-exciton annihilation. In this work, we demonstrate on the example of F-2DES and F-PP an inherent spectro-temporal symmetry of action-detected spectra, which allows general, system-independent subtraction of any stationary signals including incoherent mixing. We derive the expressions for spectra with normal and reversed time ordering of the pulses, relating these to the symmetry of the system response. As we show both analytically and numerically, the difference signal constructed from spectra with normal and reversed pulse ordering is free of incoherent mixing and highlights the excited-state dynamics. We further verify the approach on the experimental F-PP spectra of a molecular squaraine heterodimer and the F-2DES spectra of the photosynthetic antenna light-harvesting complex 2 of purple bacteria. The approach is generally applicable to action-detected 2DES and pump-probe spectroscopy without experimental modifications and is independent of the studied system, enabling their application to large systems such as molecular complexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信