卡拉胶寡糖通过介导肠道菌群失调和调节SCFAs-PI3K-AKT通路改善dss诱导的小鼠结肠炎。

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Meixian Xiang, Songtao Wu, Minxin Liu, Bin Zhang, Xiankun Xia, Wenjing Tan, Shijian Xiang
{"title":"卡拉胶寡糖通过介导肠道菌群失调和调节SCFAs-PI3K-AKT通路改善dss诱导的小鼠结肠炎。","authors":"Meixian Xiang, Songtao Wu, Minxin Liu, Bin Zhang, Xiankun Xia, Wenjing Tan, Shijian Xiang","doi":"10.1007/s10787-025-01718-w","DOIUrl":null,"url":null,"abstract":"<p><p>Iota-carrageenan oligosaccharides (iCOs), derived from marine red algae, are traditionally used as antithrombotic and anti-inflammatory agents in folk medicinal practice. Despite the prevailing emphasis on these aspects in their applications, the potential of iCOs as a prebiotic agent for gut health and its subsequent impact on intestinal disorders such as colitis remains largely unexplored. A DSS-induced colitis model was employed in C57BL/6 male mice to analyze the gut microbiota via 16S rRNA sequencing. Fecal microbiota transplantation (FMT) was used to assess the therapeutic effects of iCOs on colitis. RNA sequencing (RNA-Seq) identified pathways and genes affected by iCOs. ELISA measured inflammatory cytokines, while western blot and RT-qPCR evaluated protein and gene expressions, respectively. The iCOs increased beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Akkermansia. They enhanced short-chain fatty acid production and upregulated GPR41, GPR43, and GPR109A mRNA, influencing cytokine secretion. The iCOs reduced mRNA of SPHK1, BDKRB1, LCN2, and so on, potentially through PI3K-Akt pathway inhibition, and promoted tight junction protein expression. Our findings highlight the novel therapeutic potential of iCOs in colitis, indicating a multifaceted approach to treatment that includes gut microbiota modulation, intestinal barrier restoration, and the suppression of inflammatory responses.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iota-carrageenan oligosaccharide ameliorates DSS-induced colitis in mice by mediating gut microbiota dysbiosis and modulating SCFAs-PI3K-AKT pathway.\",\"authors\":\"Meixian Xiang, Songtao Wu, Minxin Liu, Bin Zhang, Xiankun Xia, Wenjing Tan, Shijian Xiang\",\"doi\":\"10.1007/s10787-025-01718-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iota-carrageenan oligosaccharides (iCOs), derived from marine red algae, are traditionally used as antithrombotic and anti-inflammatory agents in folk medicinal practice. Despite the prevailing emphasis on these aspects in their applications, the potential of iCOs as a prebiotic agent for gut health and its subsequent impact on intestinal disorders such as colitis remains largely unexplored. A DSS-induced colitis model was employed in C57BL/6 male mice to analyze the gut microbiota via 16S rRNA sequencing. Fecal microbiota transplantation (FMT) was used to assess the therapeutic effects of iCOs on colitis. RNA sequencing (RNA-Seq) identified pathways and genes affected by iCOs. ELISA measured inflammatory cytokines, while western blot and RT-qPCR evaluated protein and gene expressions, respectively. The iCOs increased beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Akkermansia. They enhanced short-chain fatty acid production and upregulated GPR41, GPR43, and GPR109A mRNA, influencing cytokine secretion. The iCOs reduced mRNA of SPHK1, BDKRB1, LCN2, and so on, potentially through PI3K-Akt pathway inhibition, and promoted tight junction protein expression. Our findings highlight the novel therapeutic potential of iCOs in colitis, indicating a multifaceted approach to treatment that includes gut microbiota modulation, intestinal barrier restoration, and the suppression of inflammatory responses.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-025-01718-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01718-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从海洋红藻中提取的角胶寡糖(iCOs)传统上被用作民间医学实践中的抗血栓和抗炎剂。尽管在其应用中普遍强调这些方面,但ico作为肠道健康益生元制剂的潜力及其对结肠炎等肠道疾病的后续影响在很大程度上仍未得到探索。采用dss诱导的C57BL/6雄性小鼠结肠炎模型,通过16S rRNA测序分析肠道菌群。粪便微生物群移植(FMT)用于评估ico对结肠炎的治疗效果。RNA测序(RNA- seq)鉴定了受ico影响的途径和基因。ELISA检测炎症因子,western blot和RT-qPCR分别检测蛋白和基因表达。ico增加了有益细菌,如乳杆菌、双歧杆菌和阿克曼氏菌。它们增加了短链脂肪酸的产生,上调了GPR41、GPR43和GPR109A mRNA,影响了细胞因子的分泌。iCOs可能通过抑制PI3K-Akt通路降低SPHK1、BDKRB1、LCN2等mRNA表达,促进紧密连接蛋白表达。我们的研究结果强调了ico在结肠炎中的新型治疗潜力,表明了一种多方面的治疗方法,包括肠道微生物群调节、肠道屏障恢复和炎症反应抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iota-carrageenan oligosaccharide ameliorates DSS-induced colitis in mice by mediating gut microbiota dysbiosis and modulating SCFAs-PI3K-AKT pathway.

Iota-carrageenan oligosaccharides (iCOs), derived from marine red algae, are traditionally used as antithrombotic and anti-inflammatory agents in folk medicinal practice. Despite the prevailing emphasis on these aspects in their applications, the potential of iCOs as a prebiotic agent for gut health and its subsequent impact on intestinal disorders such as colitis remains largely unexplored. A DSS-induced colitis model was employed in C57BL/6 male mice to analyze the gut microbiota via 16S rRNA sequencing. Fecal microbiota transplantation (FMT) was used to assess the therapeutic effects of iCOs on colitis. RNA sequencing (RNA-Seq) identified pathways and genes affected by iCOs. ELISA measured inflammatory cytokines, while western blot and RT-qPCR evaluated protein and gene expressions, respectively. The iCOs increased beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Akkermansia. They enhanced short-chain fatty acid production and upregulated GPR41, GPR43, and GPR109A mRNA, influencing cytokine secretion. The iCOs reduced mRNA of SPHK1, BDKRB1, LCN2, and so on, potentially through PI3K-Akt pathway inhibition, and promoted tight junction protein expression. Our findings highlight the novel therapeutic potential of iCOs in colitis, indicating a multifaceted approach to treatment that includes gut microbiota modulation, intestinal barrier restoration, and the suppression of inflammatory responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信