Dalia E Ali, Sherouk Hussein Sweilam, Ahmed M Atwa, Ali M Elgindy, Aya M Mustafa, Manar M Esmail, Mahmoud Abdelrahman Alkabbani, Mohamed Magdy Senna, Riham A El-Shiekh
{"title":"HPLC-HRMS/MS与松脂抗炎作用的多途径调控:NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1信号级联。","authors":"Dalia E Ali, Sherouk Hussein Sweilam, Ahmed M Atwa, Ali M Elgindy, Aya M Mustafa, Manar M Esmail, Mahmoud Abdelrahman Alkabbani, Mohamed Magdy Senna, Riham A El-Shiekh","doi":"10.1007/s10787-025-01660-x","DOIUrl":null,"url":null,"abstract":"<p><p>The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HPLC-HRMS/MS and anti-inflammatory effects of bunya pine resin through multifaceted pathway modulation: NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1 signaling cascades.\",\"authors\":\"Dalia E Ali, Sherouk Hussein Sweilam, Ahmed M Atwa, Ali M Elgindy, Aya M Mustafa, Manar M Esmail, Mahmoud Abdelrahman Alkabbani, Mohamed Magdy Senna, Riham A El-Shiekh\",\"doi\":\"10.1007/s10787-025-01660-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-025-01660-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01660-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
HPLC-HRMS/MS and anti-inflammatory effects of bunya pine resin through multifaceted pathway modulation: NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1 signaling cascades.
The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]