Zhendong Zhang, Qingteng Wei, Chengyue Wu, Zhengqin Ye, Liting Qin, Ting Chen, Zhe Sun, Kegong Tian, Xiangdong Li
{"title":"从减毒疫苗和经典毒株中分离出一种新的重组伪狂犬病毒及其致病性。","authors":"Zhendong Zhang, Qingteng Wei, Chengyue Wu, Zhengqin Ye, Liting Qin, Ting Chen, Zhe Sun, Kegong Tian, Xiangdong Li","doi":"10.3389/fvets.2025.1579148","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudorabies (PR) remains one of the most important swine diseases in China. Live attenuated vaccines have been widely deployed and have proven highly effective in controlling PR in the field. However, recent concerns regarding the evolution and recombination events involving pseudorabies virus (PRV) vaccine strains have raised substantial attention. In the present study, a novel recombinant PRV strain named HN2201 was isolated from one stillbirth case in Henan province in 2022. To assess the genetic and evolutionary features, the major immunogenic and virulence-associated genes, including gB, gC, gD, gG, gE and TK, were sequenced and analyzed. Phylogenetic and nucleotide homology analysis revealed that gB, gC, gD and gG genes of HN2201 displayed close relationship with Chinese classical strains. However, the TK gene of HN2201 contained a continuous deletion of 205 nucleotides, sharing the highest nucleotide homology (99.9%) with HB-98 vaccine strain. Additionally, a similar deletion was observed in the promoter region of the gE gene in both HN2201 and HB-98. Pathogenicity studies on 9-week-old piglets demonstrated that HN2201 exhibited attenuated virulence, characterized by transient clinical signs. The above results suggest that the naturally isolated HN2201 likely resulted from recombination events between the PRV classical strain and the HB-98 vaccine strain. Our findings provide valuable insights into the evolution of PRV in China and underscore the necessity of scientific and cautious use of PRV vaccines in the field.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1579148"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and pathogenicity of a novel recombinant pseudorabies virus from the attenuated vaccine and classical strains.\",\"authors\":\"Zhendong Zhang, Qingteng Wei, Chengyue Wu, Zhengqin Ye, Liting Qin, Ting Chen, Zhe Sun, Kegong Tian, Xiangdong Li\",\"doi\":\"10.3389/fvets.2025.1579148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pseudorabies (PR) remains one of the most important swine diseases in China. Live attenuated vaccines have been widely deployed and have proven highly effective in controlling PR in the field. However, recent concerns regarding the evolution and recombination events involving pseudorabies virus (PRV) vaccine strains have raised substantial attention. In the present study, a novel recombinant PRV strain named HN2201 was isolated from one stillbirth case in Henan province in 2022. To assess the genetic and evolutionary features, the major immunogenic and virulence-associated genes, including gB, gC, gD, gG, gE and TK, were sequenced and analyzed. Phylogenetic and nucleotide homology analysis revealed that gB, gC, gD and gG genes of HN2201 displayed close relationship with Chinese classical strains. However, the TK gene of HN2201 contained a continuous deletion of 205 nucleotides, sharing the highest nucleotide homology (99.9%) with HB-98 vaccine strain. Additionally, a similar deletion was observed in the promoter region of the gE gene in both HN2201 and HB-98. Pathogenicity studies on 9-week-old piglets demonstrated that HN2201 exhibited attenuated virulence, characterized by transient clinical signs. The above results suggest that the naturally isolated HN2201 likely resulted from recombination events between the PRV classical strain and the HB-98 vaccine strain. Our findings provide valuable insights into the evolution of PRV in China and underscore the necessity of scientific and cautious use of PRV vaccines in the field.</p>\",\"PeriodicalId\":12772,\"journal\":{\"name\":\"Frontiers in Veterinary Science\",\"volume\":\"12 \",\"pages\":\"1579148\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Veterinary Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3389/fvets.2025.1579148\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1579148","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Isolation and pathogenicity of a novel recombinant pseudorabies virus from the attenuated vaccine and classical strains.
Pseudorabies (PR) remains one of the most important swine diseases in China. Live attenuated vaccines have been widely deployed and have proven highly effective in controlling PR in the field. However, recent concerns regarding the evolution and recombination events involving pseudorabies virus (PRV) vaccine strains have raised substantial attention. In the present study, a novel recombinant PRV strain named HN2201 was isolated from one stillbirth case in Henan province in 2022. To assess the genetic and evolutionary features, the major immunogenic and virulence-associated genes, including gB, gC, gD, gG, gE and TK, were sequenced and analyzed. Phylogenetic and nucleotide homology analysis revealed that gB, gC, gD and gG genes of HN2201 displayed close relationship with Chinese classical strains. However, the TK gene of HN2201 contained a continuous deletion of 205 nucleotides, sharing the highest nucleotide homology (99.9%) with HB-98 vaccine strain. Additionally, a similar deletion was observed in the promoter region of the gE gene in both HN2201 and HB-98. Pathogenicity studies on 9-week-old piglets demonstrated that HN2201 exhibited attenuated virulence, characterized by transient clinical signs. The above results suggest that the naturally isolated HN2201 likely resulted from recombination events between the PRV classical strain and the HB-98 vaccine strain. Our findings provide valuable insights into the evolution of PRV in China and underscore the necessity of scientific and cautious use of PRV vaccines in the field.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.