金黄色假单胞菌对嘧啶生物合成的调控。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Folia microbiologica Pub Date : 2025-06-01 Epub Date: 2025-03-31 DOI:10.1007/s12223-025-01259-3
Lou V Gore, Thomas P West
{"title":"金黄色假单胞菌对嘧啶生物合成的调控。","authors":"Lou V Gore, Thomas P West","doi":"10.1007/s12223-025-01259-3","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of the pyrimidine biosynthetic pathway by pyrimidines was investigated in the biological control agent Pseudomonas aureofaciens ATCC 17418. Using succinate as a carbon source, orotic acid or uracil supplementation had a repressive effect in ATCC 17418 cells on dihydroorotate dehydrogenase or orotidine 5'- monophosphate decarboxylase activity but only orotic acid supplementation appeared to repress the level of orotate phosphoribosyltransferase activity. In glucose-grown ATCC 17418 cells, orotic acid supplementation appeared to repress the level of phosphoribosyltransferase or decarboxylase while uracil supplementation depressed the dihydroorotase, dehydrogenase, and decarboxylase activities. The pyrimidine auxotrophic mutant strain GW-2, isolated from ATCC 17418 using chemical mutagenesis and resistance to 5-fluoroorotic acid, was found to be deficient for orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of the succinate-grown mutant strain cells resulted in only a slight derepression of transcarbamoylase activity while pyrimidine limitation of glucose-grown mutant cells caused a derepression of the four active pyrimidine biosynthetic enzyme activities relative to their activities in the mutant cells grown with excess uracil. The control of the known regulatory enzyme aspartate transcarbamoylase was examined in P. aureofaciens ATCC 17418. Transcarbamoylase activity was shown to be inhibited by pyrophosphate, ATP, UTP, and ADP. It was concluded that the pyrimidine biosynthetic pathway in P. aureofaciens ATCC 17418 was subject to regulation at the transcriptional level and at the level of aspartate transcarbamoylase activity, which could be valuable in comprehending its nucleic acid metabolism as well as its taxonomic assignment to the Pseudomonas chlororaphis homology group.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"665-672"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of pyrimidine biosynthesis in the biocontrol bacterium Pseudomonas aureofaciens.\",\"authors\":\"Lou V Gore, Thomas P West\",\"doi\":\"10.1007/s12223-025-01259-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulation of the pyrimidine biosynthetic pathway by pyrimidines was investigated in the biological control agent Pseudomonas aureofaciens ATCC 17418. Using succinate as a carbon source, orotic acid or uracil supplementation had a repressive effect in ATCC 17418 cells on dihydroorotate dehydrogenase or orotidine 5'- monophosphate decarboxylase activity but only orotic acid supplementation appeared to repress the level of orotate phosphoribosyltransferase activity. In glucose-grown ATCC 17418 cells, orotic acid supplementation appeared to repress the level of phosphoribosyltransferase or decarboxylase while uracil supplementation depressed the dihydroorotase, dehydrogenase, and decarboxylase activities. The pyrimidine auxotrophic mutant strain GW-2, isolated from ATCC 17418 using chemical mutagenesis and resistance to 5-fluoroorotic acid, was found to be deficient for orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of the succinate-grown mutant strain cells resulted in only a slight derepression of transcarbamoylase activity while pyrimidine limitation of glucose-grown mutant cells caused a derepression of the four active pyrimidine biosynthetic enzyme activities relative to their activities in the mutant cells grown with excess uracil. The control of the known regulatory enzyme aspartate transcarbamoylase was examined in P. aureofaciens ATCC 17418. Transcarbamoylase activity was shown to be inhibited by pyrophosphate, ATP, UTP, and ADP. It was concluded that the pyrimidine biosynthetic pathway in P. aureofaciens ATCC 17418 was subject to regulation at the transcriptional level and at the level of aspartate transcarbamoylase activity, which could be valuable in comprehending its nucleic acid metabolism as well as its taxonomic assignment to the Pseudomonas chlororaphis homology group.</p>\",\"PeriodicalId\":12346,\"journal\":{\"name\":\"Folia microbiologica\",\"volume\":\" \",\"pages\":\"665-672\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia microbiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12223-025-01259-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01259-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了在金黄色假单胞菌ATCC 17418生物防治剂中,嘧啶对嘧啶生物合成途径的调控作用。以琥珀酸为碳源,在ATCC 17418细胞中,补充山羊角酸或尿嘧啶对二氢羊角酸脱氢酶或奥罗替丁5'-单磷酸脱羧酶活性有抑制作用,但只有补充山羊角酸似乎抑制了羊角酸磷酸核糖转移酶的活性水平。在葡萄糖培养的ATCC 17418细胞中,补充山梨酸似乎抑制了磷酸核糖基转移酶或脱羧酶的水平,而补充尿嘧啶则抑制了二氢羟化酶、脱氢酶和脱羧酶的活性。利用化学诱变方法从ATCC 17418中分离得到一株嘧啶类营养不良突变株GW-2,该突变株对5-氟糖酸具有抗性,发现其缺乏orotidine 5′-单磷酸脱羧酶活性。琥珀酸生长的突变株细胞的嘧啶限制只导致转氨基甲酰基酶活性轻微降低,而葡萄糖生长的突变株细胞的嘧啶限制导致四种活性嘧啶生物合成酶活性相对于过量尿嘧啶生长的突变细胞的活性降低。研究了金黄色葡萄球菌ATCC 17418对已知调节酶天冬氨酸转甲氨基酰基酶的控制。转氨基甲酰基酶活性被焦磷酸盐、ATP、UTP和ADP所抑制。综上所述,金黄色假单胞菌ATCC 17418的嘧啶生物合成途径受到转录水平和天冬氨酸转甲氨基酰化酶活性水平的调控,这对了解其核酸代谢及其与绿假单胞菌同源群的分类定位具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation of pyrimidine biosynthesis in the biocontrol bacterium Pseudomonas aureofaciens.

The regulation of the pyrimidine biosynthetic pathway by pyrimidines was investigated in the biological control agent Pseudomonas aureofaciens ATCC 17418. Using succinate as a carbon source, orotic acid or uracil supplementation had a repressive effect in ATCC 17418 cells on dihydroorotate dehydrogenase or orotidine 5'- monophosphate decarboxylase activity but only orotic acid supplementation appeared to repress the level of orotate phosphoribosyltransferase activity. In glucose-grown ATCC 17418 cells, orotic acid supplementation appeared to repress the level of phosphoribosyltransferase or decarboxylase while uracil supplementation depressed the dihydroorotase, dehydrogenase, and decarboxylase activities. The pyrimidine auxotrophic mutant strain GW-2, isolated from ATCC 17418 using chemical mutagenesis and resistance to 5-fluoroorotic acid, was found to be deficient for orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of the succinate-grown mutant strain cells resulted in only a slight derepression of transcarbamoylase activity while pyrimidine limitation of glucose-grown mutant cells caused a derepression of the four active pyrimidine biosynthetic enzyme activities relative to their activities in the mutant cells grown with excess uracil. The control of the known regulatory enzyme aspartate transcarbamoylase was examined in P. aureofaciens ATCC 17418. Transcarbamoylase activity was shown to be inhibited by pyrophosphate, ATP, UTP, and ADP. It was concluded that the pyrimidine biosynthetic pathway in P. aureofaciens ATCC 17418 was subject to regulation at the transcriptional level and at the level of aspartate transcarbamoylase activity, which could be valuable in comprehending its nucleic acid metabolism as well as its taxonomic assignment to the Pseudomonas chlororaphis homology group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信