携带改良甘油-3-磷酸和甘油利用合成二羟基丙酮途径的工程酿酒酵母菌株的生理特性。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Andreea Perpelea, Frederico Mendonça Bahia, Joeline Xiberras, Putu Virgina Partha Devanthi, Paola Branduardi, Mathias Klein, Elke Nevoigt
{"title":"携带改良甘油-3-磷酸和甘油利用合成二羟基丙酮途径的工程酿酒酵母菌株的生理特性。","authors":"Andreea Perpelea, Frederico Mendonça Bahia, Joeline Xiberras, Putu Virgina Partha Devanthi, Paola Branduardi, Mathias Klein, Elke Nevoigt","doi":"10.1093/femsyr/foaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Our laboratory previously established variants of the Saccharomyces cerevisiae strain CEN.PK113-1A able to grow in synthetic glycerol medium. One approach focused on improving the endogenous l-glycerol-3-phosphate (G3P) pathway, while a second approach aimed to replace the endogenous pathway with the dihydroxyacetone (DHA) pathway. The latter approach led to a significantly higher maximum specific growth rate (µmax) of 0.26 h-1 compared to 0.14 h-1. The current study focused on combining all genetic modifications in one strain. Apart from the so-called \"TWO pathway strain\" (CEN TWOPW), two isogenic control strains, CEN G3PPW and CEN DHAPW, were constructed. The µmax of CEN TWOPW (∼0.24 h-1) was virtually identical to that of CEN DHAPW. Remarkable characteristics of the strain CEN TWOPW compared to CEN DHAPW include a higher specific glycerol consumption rate, the capacity to deplete glycerol completely, and a much higher ethanol and lower biomass formation during oxygen-limited shake flask cultivations. The results obtained with different alleles of the GUT1 gene, encoding for glycerol kinase, suggest that the phenotype of the strain CEN TWOPW is at least partly attributed to the particular point mutation in the GUT1 allele used from the strain JL1, which was previously generated through adaptive laboratory evolution.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974383/pdf/","citationCount":"0","resultStr":"{\"title\":\"The physiology of an engineered Saccharomyces cerevisiae strain that carries both an improved glycerol-3-phosphate and the synthetic dihydroxyacetone pathway for glycerol utilization.\",\"authors\":\"Andreea Perpelea, Frederico Mendonça Bahia, Joeline Xiberras, Putu Virgina Partha Devanthi, Paola Branduardi, Mathias Klein, Elke Nevoigt\",\"doi\":\"10.1093/femsyr/foaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our laboratory previously established variants of the Saccharomyces cerevisiae strain CEN.PK113-1A able to grow in synthetic glycerol medium. One approach focused on improving the endogenous l-glycerol-3-phosphate (G3P) pathway, while a second approach aimed to replace the endogenous pathway with the dihydroxyacetone (DHA) pathway. The latter approach led to a significantly higher maximum specific growth rate (µmax) of 0.26 h-1 compared to 0.14 h-1. The current study focused on combining all genetic modifications in one strain. Apart from the so-called \\\"TWO pathway strain\\\" (CEN TWOPW), two isogenic control strains, CEN G3PPW and CEN DHAPW, were constructed. The µmax of CEN TWOPW (∼0.24 h-1) was virtually identical to that of CEN DHAPW. Remarkable characteristics of the strain CEN TWOPW compared to CEN DHAPW include a higher specific glycerol consumption rate, the capacity to deplete glycerol completely, and a much higher ethanol and lower biomass formation during oxygen-limited shake flask cultivations. The results obtained with different alleles of the GUT1 gene, encoding for glycerol kinase, suggest that the phenotype of the strain CEN TWOPW is at least partly attributed to the particular point mutation in the GUT1 allele used from the strain JL1, which was previously generated through adaptive laboratory evolution.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974383/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foaf015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们的实验室先前建立了酿酒葡萄球菌菌株CEN的变体。PK113-1A能在合成甘油培养基中生长。一种方法侧重于改善内源性l -甘油3-磷酸(G3P)途径,而另一种方法旨在用二羟基丙酮(DHA)途径取代内源性途径。后一种方法的最大比生长率(µmax)为0.26 h-1,显著高于0.14 h-1。目前的研究重点是在一个菌株中结合所有的基因修饰。除了所谓的“双途径菌株”(CEN TWOPW)外,还构建了CEN G3PPW和CEN DHAPW两个等基因对照菌株。CEN TWOPW的µmax (~ 0.24 h-1)几乎与CEN DHAPW相同。与CEN DHAPW相比,菌株CEN TWOPW的显著特征包括更高的比甘油消耗率,完全消耗甘油的能力,以及在限氧摇瓶培养过程中更高的乙醇和更低的生物质生成。利用编码甘油激酶的GUT1基因的不同等位基因获得的结果表明,菌株CEN TWOPW的表型至少部分归因于菌株JL1使用的GUT1等位基因的特定点突变,该突变先前通过适应性实验室进化产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The physiology of an engineered Saccharomyces cerevisiae strain that carries both an improved glycerol-3-phosphate and the synthetic dihydroxyacetone pathway for glycerol utilization.

Our laboratory previously established variants of the Saccharomyces cerevisiae strain CEN.PK113-1A able to grow in synthetic glycerol medium. One approach focused on improving the endogenous l-glycerol-3-phosphate (G3P) pathway, while a second approach aimed to replace the endogenous pathway with the dihydroxyacetone (DHA) pathway. The latter approach led to a significantly higher maximum specific growth rate (µmax) of 0.26 h-1 compared to 0.14 h-1. The current study focused on combining all genetic modifications in one strain. Apart from the so-called "TWO pathway strain" (CEN TWOPW), two isogenic control strains, CEN G3PPW and CEN DHAPW, were constructed. The µmax of CEN TWOPW (∼0.24 h-1) was virtually identical to that of CEN DHAPW. Remarkable characteristics of the strain CEN TWOPW compared to CEN DHAPW include a higher specific glycerol consumption rate, the capacity to deplete glycerol completely, and a much higher ethanol and lower biomass formation during oxygen-limited shake flask cultivations. The results obtained with different alleles of the GUT1 gene, encoding for glycerol kinase, suggest that the phenotype of the strain CEN TWOPW is at least partly attributed to the particular point mutation in the GUT1 allele used from the strain JL1, which was previously generated through adaptive laboratory evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信