阻断环状RNA FNDC3B诱导成纤维细胞样滑膜细胞功能障碍,通过调节miR-125a-5p-Hexokinase2轴改善类风湿关节炎。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-06-01 Epub Date: 2025-03-26 DOI:10.1007/s10616-025-00745-3
Jiaxin Fu, Zhi Liu, Guangxin Zhang, Chun Zhang
{"title":"阻断环状RNA FNDC3B诱导成纤维细胞样滑膜细胞功能障碍,通过调节miR-125a-5p-Hexokinase2轴改善类风湿关节炎。","authors":"Jiaxin Fu, Zhi Liu, Guangxin Zhang, Chun Zhang","doi":"10.1007/s10616-025-00745-3","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune inflammatory joint disease. The cause of synovitis in rheumatoid arthritis involves the interaction between immune cells/macrophages and fibroblast-like synoviocytes (FLSs-RA). The impact of circular RNAs on FLSs and their role in RA pathology is still unknown. This study aimed to investigate the roles and molecular mechanisms of circular RNA FNDC3B in regulating cell injury and glucose metabolism of FLSs in RA. We demonstrated that circFNDC3B was significantly upregulated and miR-125a-5p was significantly downregulated in FLSs from RA patients. When circFNDC3B was silenced or miR-125a-5p was overexpressed, it reduced FLSs-RA glucose metabolism and increased oxidative stress-induced cell injury. Through bioinformatics analysis, RNA pull-down, and luciferase assays, it was found that circFNDC3B sponged miR-125a-5p to create a ceRNA network in FLSs-RA. The glucose metabolism rate was elevated in FLSs-RA, showing a glucose-dependent characteristic compared to normal FLSs. The enzyme hexokinase 2 (HK2), which is crucial for glucose metabolism, was identified as a direct target of miR-125a-5p in FLSs. In rescue experiments, restoring miR-125a-5p in circFNDC3B-overexpressing FLSs-RA successfully counteracted the circFNDC3B-promoted glucose metabolism and resistance to cell injury. In conclusion, this study highlighted the important roles and molecular mechanisms of circFNDC3B in accelerating glucose metabolism and preventing cell apoptosis in fibroblast-like synoviocytes during rheumatoid arthritis by modulating the miR-125a-5p-HK2 axis. Targeting the circFNDC3B-mediated glucose metabolism pathway could be a promising strategy for rheumatoid arthritis therapy.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00745-3.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"83"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947371/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blocking circular RNA FNDC3B induces fibroblast-like synoviocytes dysfunction to ameliorate rheumatoid arthritis through regulating the miR-125a-5p-Hexokinase2 axis.\",\"authors\":\"Jiaxin Fu, Zhi Liu, Guangxin Zhang, Chun Zhang\",\"doi\":\"10.1007/s10616-025-00745-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune inflammatory joint disease. The cause of synovitis in rheumatoid arthritis involves the interaction between immune cells/macrophages and fibroblast-like synoviocytes (FLSs-RA). The impact of circular RNAs on FLSs and their role in RA pathology is still unknown. This study aimed to investigate the roles and molecular mechanisms of circular RNA FNDC3B in regulating cell injury and glucose metabolism of FLSs in RA. We demonstrated that circFNDC3B was significantly upregulated and miR-125a-5p was significantly downregulated in FLSs from RA patients. When circFNDC3B was silenced or miR-125a-5p was overexpressed, it reduced FLSs-RA glucose metabolism and increased oxidative stress-induced cell injury. Through bioinformatics analysis, RNA pull-down, and luciferase assays, it was found that circFNDC3B sponged miR-125a-5p to create a ceRNA network in FLSs-RA. The glucose metabolism rate was elevated in FLSs-RA, showing a glucose-dependent characteristic compared to normal FLSs. The enzyme hexokinase 2 (HK2), which is crucial for glucose metabolism, was identified as a direct target of miR-125a-5p in FLSs. In rescue experiments, restoring miR-125a-5p in circFNDC3B-overexpressing FLSs-RA successfully counteracted the circFNDC3B-promoted glucose metabolism and resistance to cell injury. In conclusion, this study highlighted the important roles and molecular mechanisms of circFNDC3B in accelerating glucose metabolism and preventing cell apoptosis in fibroblast-like synoviocytes during rheumatoid arthritis by modulating the miR-125a-5p-HK2 axis. Targeting the circFNDC3B-mediated glucose metabolism pathway could be a promising strategy for rheumatoid arthritis therapy.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00745-3.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 3\",\"pages\":\"83\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947371/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-025-00745-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00745-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类风湿性关节炎(RA)是一种慢性进行性自身免疫性炎症性关节疾病。类风湿性关节炎滑膜炎的病因涉及免疫细胞/巨噬细胞和成纤维细胞样滑膜细胞(FLSs-RA)之间的相互作用。环状rna对FLSs的影响及其在RA病理中的作用尚不清楚。本研究旨在探讨环状RNA FNDC3B在RA中调控FLSs细胞损伤及糖代谢中的作用及分子机制。我们证明circFNDC3B在RA患者的fls中显著上调,miR-125a-5p显著下调。当circFNDC3B被沉默或miR-125a-5p过表达时,它会降低FLSs-RA的葡萄糖代谢,增加氧化应激诱导的细胞损伤。通过生物信息学分析、RNA pull-down和荧光素酶检测,我们发现circFNDC3B海绵化miR-125a-5p在FLSs-RA中形成了ceRNA网络。与正常FLSs相比,FLSs- ra的葡萄糖代谢率升高,表现出葡萄糖依赖的特征。己糖激酶2 (HK2)对葡萄糖代谢至关重要,被认为是FLSs中miR-125a-5p的直接靶点。在救援实验中,在circfndc3b过表达的FLSs-RA中恢复miR-125a-5p成功地抵消了circfndc3b促进的葡萄糖代谢和对细胞损伤的抵抗。综上所述,本研究强调了circFNDC3B通过调节miR-125a-5p-HK2轴在类风湿关节炎期间加速成纤维细胞样滑膜细胞葡萄糖代谢和防止细胞凋亡中的重要作用和分子机制。靶向circfndc3b介导的糖代谢途径可能是一种很有前途的类风湿关节炎治疗策略。补充信息:在线版本包含补充资料,可在10.1007/s10616-025-00745-3获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blocking circular RNA FNDC3B induces fibroblast-like synoviocytes dysfunction to ameliorate rheumatoid arthritis through regulating the miR-125a-5p-Hexokinase2 axis.

Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune inflammatory joint disease. The cause of synovitis in rheumatoid arthritis involves the interaction between immune cells/macrophages and fibroblast-like synoviocytes (FLSs-RA). The impact of circular RNAs on FLSs and their role in RA pathology is still unknown. This study aimed to investigate the roles and molecular mechanisms of circular RNA FNDC3B in regulating cell injury and glucose metabolism of FLSs in RA. We demonstrated that circFNDC3B was significantly upregulated and miR-125a-5p was significantly downregulated in FLSs from RA patients. When circFNDC3B was silenced or miR-125a-5p was overexpressed, it reduced FLSs-RA glucose metabolism and increased oxidative stress-induced cell injury. Through bioinformatics analysis, RNA pull-down, and luciferase assays, it was found that circFNDC3B sponged miR-125a-5p to create a ceRNA network in FLSs-RA. The glucose metabolism rate was elevated in FLSs-RA, showing a glucose-dependent characteristic compared to normal FLSs. The enzyme hexokinase 2 (HK2), which is crucial for glucose metabolism, was identified as a direct target of miR-125a-5p in FLSs. In rescue experiments, restoring miR-125a-5p in circFNDC3B-overexpressing FLSs-RA successfully counteracted the circFNDC3B-promoted glucose metabolism and resistance to cell injury. In conclusion, this study highlighted the important roles and molecular mechanisms of circFNDC3B in accelerating glucose metabolism and preventing cell apoptosis in fibroblast-like synoviocytes during rheumatoid arthritis by modulating the miR-125a-5p-HK2 axis. Targeting the circFNDC3B-mediated glucose metabolism pathway could be a promising strategy for rheumatoid arthritis therapy.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00745-3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信