蔗糖和脂肪相关的代谢状态影响肺脂质代谢对缺氧的适应。

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Sophia Pankoke, Lea Gerling, Matthias Ochs, Christian Mühlfeld, Julia Schipke
{"title":"蔗糖和脂肪相关的代谢状态影响肺脂质代谢对缺氧的适应。","authors":"Sophia Pankoke, Lea Gerling, Matthias Ochs, Christian Mühlfeld, Julia Schipke","doi":"10.1007/s00441-025-03968-0","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary surfactant is essential for lung function and consists mainly of lipids, almost half of which in adult mammals originate from de novo synthesis in alveolar epithelial type-2 (AE2) cells. Obesogenic nutrition and hypoxia coexist in obese patients with chronic lung diseases. This study tested the hypothesis that diet-induced obesity and chronic hypoxia alter lipid metabolism and thereby deteriorate surfactant homeostasis. Male C57BL/6N mice were fed control diet (4% fat, 6% sucrose; CD), high-sucrose diet (4% fat, 46% sucrose; HSD) or high-fat diet (35% fat, 7% sucrose; HFD). After 27 weeks, half of each diet group was exposed to hypoxia (13% O<sub>2</sub>, Hyp) for 3 weeks. After 30 weeks, lung mechanics were assessed, and the blood, livers, and lungs were analyzed. In CD-fed mice, hypoxia induced lung mechanical changes indicative of reduced elastic recoil properties, as well as smaller lamellar bodies (LBs) and higher composite body volumes, suggesting an increased surfactant precursor formation. HSD and HFD induced lipid accumulation in liver and AE2 cells. In HSD-Hyp and HFD-Hyp, LB volumes per alveolar surface area were elevated, indicating compensatory increases in intracellular surfactant pools which were absent in CD-Hyp. Additionally, hypoxia-related lung mechanics alterations were less pronounced in HSD-Hyp and HFD-Hyp. Lung proteome analysis revealed that only a few lipid metabolism-associated proteins were similarly regulated within diet groups under hypoxia, with the most prominent changes in sucrose-fed hypoxic animals. Thus, individual diet-related metabolic states specifically affect the adaptation of the pulmonary lipid metabolism and intracellular surfactant assembly to chronic hypoxia.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sucrose- and fat-related metabolic states influence the adaptation of the pulmonary lipid metabolism to hypoxia.\",\"authors\":\"Sophia Pankoke, Lea Gerling, Matthias Ochs, Christian Mühlfeld, Julia Schipke\",\"doi\":\"10.1007/s00441-025-03968-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary surfactant is essential for lung function and consists mainly of lipids, almost half of which in adult mammals originate from de novo synthesis in alveolar epithelial type-2 (AE2) cells. Obesogenic nutrition and hypoxia coexist in obese patients with chronic lung diseases. This study tested the hypothesis that diet-induced obesity and chronic hypoxia alter lipid metabolism and thereby deteriorate surfactant homeostasis. Male C57BL/6N mice were fed control diet (4% fat, 6% sucrose; CD), high-sucrose diet (4% fat, 46% sucrose; HSD) or high-fat diet (35% fat, 7% sucrose; HFD). After 27 weeks, half of each diet group was exposed to hypoxia (13% O<sub>2</sub>, Hyp) for 3 weeks. After 30 weeks, lung mechanics were assessed, and the blood, livers, and lungs were analyzed. In CD-fed mice, hypoxia induced lung mechanical changes indicative of reduced elastic recoil properties, as well as smaller lamellar bodies (LBs) and higher composite body volumes, suggesting an increased surfactant precursor formation. HSD and HFD induced lipid accumulation in liver and AE2 cells. In HSD-Hyp and HFD-Hyp, LB volumes per alveolar surface area were elevated, indicating compensatory increases in intracellular surfactant pools which were absent in CD-Hyp. Additionally, hypoxia-related lung mechanics alterations were less pronounced in HSD-Hyp and HFD-Hyp. Lung proteome analysis revealed that only a few lipid metabolism-associated proteins were similarly regulated within diet groups under hypoxia, with the most prominent changes in sucrose-fed hypoxic animals. Thus, individual diet-related metabolic states specifically affect the adaptation of the pulmonary lipid metabolism and intracellular surfactant assembly to chronic hypoxia.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03968-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03968-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺表面活性剂对肺功能至关重要,主要由脂质组成,在成年哺乳动物中,几乎一半的脂质来源于肺泡上皮2型(AE2)细胞的新生合成。肥胖合并慢性肺部疾病患者的致肥性营养与缺氧并存。本研究验证了饮食引起的肥胖和慢性缺氧改变脂质代谢从而破坏表面活性剂稳态的假设。雄性C57BL/6N小鼠饲喂对照饲料(4%脂肪,6%蔗糖;CD),高糖饮食(4%脂肪,46%蔗糖;高脂饮食(35%脂肪,7%蔗糖;HFD)。27周后,每个饮食组一半小鼠缺氧(13% O2, Hyp) 3周。30周后,评估肺力学,分析血液、肝脏和肺。在cd喂养的小鼠中,缺氧引起的肺力学变化表明弹性反冲性能降低,片状体(LBs)变小,复合体体积增大,表明表面活性剂前体形成增加。HSD和HFD诱导肝脏和AE2细胞的脂质积累。在HSD-Hyp和HFD-Hyp中,每肺泡表面积LB体积升高,表明细胞内表面活性剂池代偿性增加,而CD-Hyp中没有。此外,缺氧相关的肺力学改变在HSD-Hyp和HFD-Hyp中不太明显。肺蛋白质组学分析显示,在低氧条件下,只有少数脂质代谢相关蛋白在饮食组中受到类似的调节,其中蔗糖喂养的低氧动物的变化最为显著。因此,个体饮食相关的代谢状态特异性地影响肺脂质代谢和细胞内表面活性剂组装对慢性缺氧的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sucrose- and fat-related metabolic states influence the adaptation of the pulmonary lipid metabolism to hypoxia.

Pulmonary surfactant is essential for lung function and consists mainly of lipids, almost half of which in adult mammals originate from de novo synthesis in alveolar epithelial type-2 (AE2) cells. Obesogenic nutrition and hypoxia coexist in obese patients with chronic lung diseases. This study tested the hypothesis that diet-induced obesity and chronic hypoxia alter lipid metabolism and thereby deteriorate surfactant homeostasis. Male C57BL/6N mice were fed control diet (4% fat, 6% sucrose; CD), high-sucrose diet (4% fat, 46% sucrose; HSD) or high-fat diet (35% fat, 7% sucrose; HFD). After 27 weeks, half of each diet group was exposed to hypoxia (13% O2, Hyp) for 3 weeks. After 30 weeks, lung mechanics were assessed, and the blood, livers, and lungs were analyzed. In CD-fed mice, hypoxia induced lung mechanical changes indicative of reduced elastic recoil properties, as well as smaller lamellar bodies (LBs) and higher composite body volumes, suggesting an increased surfactant precursor formation. HSD and HFD induced lipid accumulation in liver and AE2 cells. In HSD-Hyp and HFD-Hyp, LB volumes per alveolar surface area were elevated, indicating compensatory increases in intracellular surfactant pools which were absent in CD-Hyp. Additionally, hypoxia-related lung mechanics alterations were less pronounced in HSD-Hyp and HFD-Hyp. Lung proteome analysis revealed that only a few lipid metabolism-associated proteins were similarly regulated within diet groups under hypoxia, with the most prominent changes in sucrose-fed hypoxic animals. Thus, individual diet-related metabolic states specifically affect the adaptation of the pulmonary lipid metabolism and intracellular surfactant assembly to chronic hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信