犬尿酸与促进精神分裂症活动依赖性突触消除。

IF 15.1 1区 医学 Q1 PSYCHIATRY
Funda Orhan, Susmita Malwade, Neda Khanlarkhani, Asimenia Gkogka, Angelika Langeder, Oscar Jungholm, Marja Koskuvi, Šárka Lehtonen, Lilly Schwieler, Kent Jardemark, Jari Tiihonen, Jari Koistinaho, Sophie Erhardt, Göran Engberg, Samudyata Samudyata, Carl M Sellgren
{"title":"犬尿酸与促进精神分裂症活动依赖性突触消除。","authors":"Funda Orhan, Susmita Malwade, Neda Khanlarkhani, Asimenia Gkogka, Angelika Langeder, Oscar Jungholm, Marja Koskuvi, Šárka Lehtonen, Lilly Schwieler, Kent Jardemark, Jari Tiihonen, Jari Koistinaho, Sophie Erhardt, Göran Engberg, Samudyata Samudyata, Carl M Sellgren","doi":"10.1176/appi.ajp.20240048","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Schizophrenia is a neurodevelopmental disorder characterized by an excessive loss of synapses. Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan along the kynurenine pathway, can induce schizophrenia-related phenotypes in rodents, and clinical studies have revealed elevated KYNA levels in the CNS of individuals with schizophrenia. However, the factors that cause elevated KYNA levels in schizophrenia, and the mechanisms by which KYNA contributes to pathophysiology, remain largely elusive. The authors used patient-derived cellular modeling to test the hypothesis that KYNA can induce microglia-mediated synapse engulfment by reducing neuronal activity.</p><p><strong>Methods: </strong>Patient-derived induced pluripotent stem cells were used to generate 2D cultures of neurons and microglia-like cells, as well as forebrain organoids with innately developing microglia, to study how KYNA influences synaptic activity and microglial uptake of synaptic structures. To verify the experimental data in a clinical context, large-scale developmental postmortem brain tissue and genetic datasets were used to study coexpression networks for the KYNA-producing kynurenine aminotransferases (KATs) regarding enrichment for common schizophrenia genetic risk variants and functional annotations.</p><p><strong>Results: </strong>In these patient-derived experimental models, KYNA induced uptake of synaptic structures in microglia, and inhibition of the endogenous KYNA production led to a decrease in the internalization of synapses in microglia. The integrated large-scale transcriptomic and genetic datasets showed that KYNA-producing KATs enriched for genes governing synaptic activity and genetic risk variants for schizophrenia.</p><p><strong>Conclusions: </strong>Together, these results link genetic risk variants for schizophrenia to elevated production of KYNA and excessive and activity-dependent internalization of synaptic material in microglia, while implicating pharmacological inhibition of KATs as a strategy to avoid synapse loss in schizophrenia.</p>","PeriodicalId":7656,"journal":{"name":"American Journal of Psychiatry","volume":"182 4","pages":"389-400"},"PeriodicalIF":15.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kynurenic Acid and Promotion of Activity-Dependent Synapse Elimination in Schizophrenia.\",\"authors\":\"Funda Orhan, Susmita Malwade, Neda Khanlarkhani, Asimenia Gkogka, Angelika Langeder, Oscar Jungholm, Marja Koskuvi, Šárka Lehtonen, Lilly Schwieler, Kent Jardemark, Jari Tiihonen, Jari Koistinaho, Sophie Erhardt, Göran Engberg, Samudyata Samudyata, Carl M Sellgren\",\"doi\":\"10.1176/appi.ajp.20240048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Schizophrenia is a neurodevelopmental disorder characterized by an excessive loss of synapses. Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan along the kynurenine pathway, can induce schizophrenia-related phenotypes in rodents, and clinical studies have revealed elevated KYNA levels in the CNS of individuals with schizophrenia. However, the factors that cause elevated KYNA levels in schizophrenia, and the mechanisms by which KYNA contributes to pathophysiology, remain largely elusive. The authors used patient-derived cellular modeling to test the hypothesis that KYNA can induce microglia-mediated synapse engulfment by reducing neuronal activity.</p><p><strong>Methods: </strong>Patient-derived induced pluripotent stem cells were used to generate 2D cultures of neurons and microglia-like cells, as well as forebrain organoids with innately developing microglia, to study how KYNA influences synaptic activity and microglial uptake of synaptic structures. To verify the experimental data in a clinical context, large-scale developmental postmortem brain tissue and genetic datasets were used to study coexpression networks for the KYNA-producing kynurenine aminotransferases (KATs) regarding enrichment for common schizophrenia genetic risk variants and functional annotations.</p><p><strong>Results: </strong>In these patient-derived experimental models, KYNA induced uptake of synaptic structures in microglia, and inhibition of the endogenous KYNA production led to a decrease in the internalization of synapses in microglia. The integrated large-scale transcriptomic and genetic datasets showed that KYNA-producing KATs enriched for genes governing synaptic activity and genetic risk variants for schizophrenia.</p><p><strong>Conclusions: </strong>Together, these results link genetic risk variants for schizophrenia to elevated production of KYNA and excessive and activity-dependent internalization of synaptic material in microglia, while implicating pharmacological inhibition of KATs as a strategy to avoid synapse loss in schizophrenia.</p>\",\"PeriodicalId\":7656,\"journal\":{\"name\":\"American Journal of Psychiatry\",\"volume\":\"182 4\",\"pages\":\"389-400\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1176/appi.ajp.20240048\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1176/appi.ajp.20240048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

目的:精神分裂症是一种以突触过度丧失为特征的神经发育障碍。犬尿氨酸(KYNA)是色氨酸沿犬尿氨酸途径的一种神经活性代谢物,可以在啮齿动物中诱导精神分裂症相关表型,临床研究表明,精神分裂症患者中枢神经系统中KYNA水平升高。然而,导致精神分裂症患者KYNA水平升高的因素,以及KYNA参与病理生理的机制,在很大程度上仍是难以捉摸的。作者使用患者来源的细胞模型来验证KYNA可以通过减少神经元活动诱导小胶质细胞介导的突触吞噬的假设。方法:采用患者源性诱导多能干细胞培养神经元和小胶质样细胞,以及先天发育小胶质细胞的前脑类器官,研究KYNA如何影响突触活性和小胶质细胞对突触结构的摄取。为了在临床背景下验证实验数据,研究人员使用了大规模的发育后脑组织和遗传数据集来研究产生kyna的犬尿氨酸氨基转移酶(KATs)的共表达网络,这些网络与常见精神分裂症遗传风险变异和功能注释的富集有关。结果:在这些患者衍生的实验模型中,KYNA诱导小胶质细胞突触结构摄取,抑制内源性KYNA产生导致小胶质细胞突触内化减少。整合的大规模转录组学和遗传数据集显示,产生kyna的KATs富集了控制突触活性和精神分裂症遗传风险变异的基因。综上所述,这些结果将精神分裂症的遗传风险变异与KYNA的产生升高以及小胶质细胞中突触物质的过度和活动依赖性内化联系起来,同时暗示药物抑制KATs是避免精神分裂症突触丢失的一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kynurenic Acid and Promotion of Activity-Dependent Synapse Elimination in Schizophrenia.

Objective: Schizophrenia is a neurodevelopmental disorder characterized by an excessive loss of synapses. Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan along the kynurenine pathway, can induce schizophrenia-related phenotypes in rodents, and clinical studies have revealed elevated KYNA levels in the CNS of individuals with schizophrenia. However, the factors that cause elevated KYNA levels in schizophrenia, and the mechanisms by which KYNA contributes to pathophysiology, remain largely elusive. The authors used patient-derived cellular modeling to test the hypothesis that KYNA can induce microglia-mediated synapse engulfment by reducing neuronal activity.

Methods: Patient-derived induced pluripotent stem cells were used to generate 2D cultures of neurons and microglia-like cells, as well as forebrain organoids with innately developing microglia, to study how KYNA influences synaptic activity and microglial uptake of synaptic structures. To verify the experimental data in a clinical context, large-scale developmental postmortem brain tissue and genetic datasets were used to study coexpression networks for the KYNA-producing kynurenine aminotransferases (KATs) regarding enrichment for common schizophrenia genetic risk variants and functional annotations.

Results: In these patient-derived experimental models, KYNA induced uptake of synaptic structures in microglia, and inhibition of the endogenous KYNA production led to a decrease in the internalization of synapses in microglia. The integrated large-scale transcriptomic and genetic datasets showed that KYNA-producing KATs enriched for genes governing synaptic activity and genetic risk variants for schizophrenia.

Conclusions: Together, these results link genetic risk variants for schizophrenia to elevated production of KYNA and excessive and activity-dependent internalization of synaptic material in microglia, while implicating pharmacological inhibition of KATs as a strategy to avoid synapse loss in schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Psychiatry
American Journal of Psychiatry 医学-精神病学
CiteScore
22.30
自引率
2.80%
发文量
157
审稿时长
4-8 weeks
期刊介绍: The American Journal of Psychiatry, dedicated to keeping psychiatry vibrant and relevant, publishes the latest advances in the diagnosis and treatment of mental illness. The journal covers the full spectrum of issues related to mental health diagnoses and treatment, presenting original articles on new developments in diagnosis, treatment, neuroscience, and patient populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信