Di Wu, Siwei Zhang, Chunming Bai, Yifei Liu, Zhiyu Sun, Mingzhu Ma, Huan Liu, Jean Wan Hong Yong, Hans Lambers
{"title":"补充钙克服夜间低温诱导花生循环电子传递的碳源-汇限制。","authors":"Di Wu, Siwei Zhang, Chunming Bai, Yifei Liu, Zhiyu Sun, Mingzhu Ma, Huan Liu, Jean Wan Hong Yong, Hans Lambers","doi":"10.1111/pce.15467","DOIUrl":null,"url":null,"abstract":"<p><p>'Calcium (Ca<sup>2+</sup>) priming' is an effective strategy to restore efficient carbon assimilation with undergoing unfavourable cold stress (day/night: 25°C/8°C). However, it is unclear how exogenous calcium strengthens the cyclic electron transfer (CET) to attain optimal carbon flux. To assess the nutrient fortification role of Ca<sup>2+</sup> (15 mM) in facilitating this process for peanuts, we added antimycin (AA, 100 μM) and rotenone (R, 100 μM) as specific inhibitors. Our results revealed that inhibiting CET caused a negative effect on photosynthesis. The Ca<sup>2+</sup> treatment accelerated the turnover of non-structural carbohydrates, and linear electron carriers while balancing the photosystem I (PSI) bilateral redox potential. The treatment also strengthened the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) and the NADH dehydrogenase-like (NDH)-mediated CET, with plausible crosstalk between thioredoxin (Trx) system and Ca<sup>2+</sup> signalling, to regulate chloroplast redox homoeostasis. Specifically, exogenous Ca<sup>2+</sup> strengthened the PGR5/PGRL1-mediated CET by providing sufficient ATP and adequate photoprotection during the long-term exposure; the NDH-mediated CET served to alleviate limitations on the PSI acceptor side by translocating protons. This study demonstrated the effectiveness of harnessing optimal nutrient supply, in the form of foliar Ca<sup>2+</sup>-based sprays to strengthen the eco-physiological resilience of peanuts against cold stress.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supplementary Calcium Overcomes Nocturnal Chilling-Induced Carbon Source-Sink Limitations of Cyclic Electron Transport in Peanuts.\",\"authors\":\"Di Wu, Siwei Zhang, Chunming Bai, Yifei Liu, Zhiyu Sun, Mingzhu Ma, Huan Liu, Jean Wan Hong Yong, Hans Lambers\",\"doi\":\"10.1111/pce.15467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>'Calcium (Ca<sup>2+</sup>) priming' is an effective strategy to restore efficient carbon assimilation with undergoing unfavourable cold stress (day/night: 25°C/8°C). However, it is unclear how exogenous calcium strengthens the cyclic electron transfer (CET) to attain optimal carbon flux. To assess the nutrient fortification role of Ca<sup>2+</sup> (15 mM) in facilitating this process for peanuts, we added antimycin (AA, 100 μM) and rotenone (R, 100 μM) as specific inhibitors. Our results revealed that inhibiting CET caused a negative effect on photosynthesis. The Ca<sup>2+</sup> treatment accelerated the turnover of non-structural carbohydrates, and linear electron carriers while balancing the photosystem I (PSI) bilateral redox potential. The treatment also strengthened the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) and the NADH dehydrogenase-like (NDH)-mediated CET, with plausible crosstalk between thioredoxin (Trx) system and Ca<sup>2+</sup> signalling, to regulate chloroplast redox homoeostasis. Specifically, exogenous Ca<sup>2+</sup> strengthened the PGR5/PGRL1-mediated CET by providing sufficient ATP and adequate photoprotection during the long-term exposure; the NDH-mediated CET served to alleviate limitations on the PSI acceptor side by translocating protons. This study demonstrated the effectiveness of harnessing optimal nutrient supply, in the form of foliar Ca<sup>2+</sup>-based sprays to strengthen the eco-physiological resilience of peanuts against cold stress.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15467\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15467","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Supplementary Calcium Overcomes Nocturnal Chilling-Induced Carbon Source-Sink Limitations of Cyclic Electron Transport in Peanuts.
'Calcium (Ca2+) priming' is an effective strategy to restore efficient carbon assimilation with undergoing unfavourable cold stress (day/night: 25°C/8°C). However, it is unclear how exogenous calcium strengthens the cyclic electron transfer (CET) to attain optimal carbon flux. To assess the nutrient fortification role of Ca2+ (15 mM) in facilitating this process for peanuts, we added antimycin (AA, 100 μM) and rotenone (R, 100 μM) as specific inhibitors. Our results revealed that inhibiting CET caused a negative effect on photosynthesis. The Ca2+ treatment accelerated the turnover of non-structural carbohydrates, and linear electron carriers while balancing the photosystem I (PSI) bilateral redox potential. The treatment also strengthened the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) and the NADH dehydrogenase-like (NDH)-mediated CET, with plausible crosstalk between thioredoxin (Trx) system and Ca2+ signalling, to regulate chloroplast redox homoeostasis. Specifically, exogenous Ca2+ strengthened the PGR5/PGRL1-mediated CET by providing sufficient ATP and adequate photoprotection during the long-term exposure; the NDH-mediated CET served to alleviate limitations on the PSI acceptor side by translocating protons. This study demonstrated the effectiveness of harnessing optimal nutrient supply, in the form of foliar Ca2+-based sprays to strengthen the eco-physiological resilience of peanuts against cold stress.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.