Rebecca E. Koch, Christy N. Truong, Hannah R. Reeb, Brooke H. Joski, Geoffrey E. Hill, Yufeng Zhang, Matthew B. Toomey
{"title":"多种途径使红色类胡萝卜素着色:家雀(Haemorhous mexicanus)不使用CYP2J19产生红色羽毛。","authors":"Rebecca E. Koch, Christy N. Truong, Hannah R. Reeb, Brooke H. Joski, Geoffrey E. Hill, Yufeng Zhang, Matthew B. Toomey","doi":"10.1111/mec.17744","DOIUrl":null,"url":null,"abstract":"<p>The carotenoid-based colours of birds are a celebrated example of biological diversity and an important system for the study of evolution. Recently, a two-step mechanism, with the enzymes cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), was described for the biosynthesis of red ketocarotenoids from yellow dietary carotenoids in the retina and plumage of birds. A common assumption has been that all birds with ketocarotenoid-based plumage coloration used this CYP2J19/BDH1L mechanism to produce red feathers. We tested this assumption in house finches (<i>Haemorhous mexicanus</i>) by examining the catalytic function of the house finch homologues of these enzymes and tracking their expression in birds growing new feathers. We found that CYP2J19 and BDH1L did not catalyse the production of 3-hydroxy-echinenone (3-OH-echinenone), the primary red plumage pigment of house finches, when provided with common dietary carotenoid substrates. Moreover, gene expression analyses revealed little to no expression of <i>CYP2J19</i> in liver tissue or growing feather follicles, the putative sites of pigment metabolism in moulting house finches. Finally, although the hepatic mitochondria of house finches have high concentrations of 3-OH-echinenone, observations using fluorescent markers suggest that both CYP2J19 and BDH1L localise to the endomembrane system rather than the mitochondria. We propose that house finches and other birds that deposit 3-OH-echinenone as their primary red plumage pigment use an alternative enzymatic pathway to produce their characteristic red ketocarotenoid-based coloration.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17744","citationCount":"0","resultStr":"{\"title\":\"Multiple Pathways to Red Carotenoid Coloration: House Finches (Haemorhous mexicanus) Do Not Use CYP2J19 to Produce Red Plumage\",\"authors\":\"Rebecca E. Koch, Christy N. Truong, Hannah R. Reeb, Brooke H. Joski, Geoffrey E. Hill, Yufeng Zhang, Matthew B. Toomey\",\"doi\":\"10.1111/mec.17744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The carotenoid-based colours of birds are a celebrated example of biological diversity and an important system for the study of evolution. Recently, a two-step mechanism, with the enzymes cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), was described for the biosynthesis of red ketocarotenoids from yellow dietary carotenoids in the retina and plumage of birds. A common assumption has been that all birds with ketocarotenoid-based plumage coloration used this CYP2J19/BDH1L mechanism to produce red feathers. We tested this assumption in house finches (<i>Haemorhous mexicanus</i>) by examining the catalytic function of the house finch homologues of these enzymes and tracking their expression in birds growing new feathers. We found that CYP2J19 and BDH1L did not catalyse the production of 3-hydroxy-echinenone (3-OH-echinenone), the primary red plumage pigment of house finches, when provided with common dietary carotenoid substrates. Moreover, gene expression analyses revealed little to no expression of <i>CYP2J19</i> in liver tissue or growing feather follicles, the putative sites of pigment metabolism in moulting house finches. Finally, although the hepatic mitochondria of house finches have high concentrations of 3-OH-echinenone, observations using fluorescent markers suggest that both CYP2J19 and BDH1L localise to the endomembrane system rather than the mitochondria. We propose that house finches and other birds that deposit 3-OH-echinenone as their primary red plumage pigment use an alternative enzymatic pathway to produce their characteristic red ketocarotenoid-based coloration.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17744\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17744\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17744","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multiple Pathways to Red Carotenoid Coloration: House Finches (Haemorhous mexicanus) Do Not Use CYP2J19 to Produce Red Plumage
The carotenoid-based colours of birds are a celebrated example of biological diversity and an important system for the study of evolution. Recently, a two-step mechanism, with the enzymes cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), was described for the biosynthesis of red ketocarotenoids from yellow dietary carotenoids in the retina and plumage of birds. A common assumption has been that all birds with ketocarotenoid-based plumage coloration used this CYP2J19/BDH1L mechanism to produce red feathers. We tested this assumption in house finches (Haemorhous mexicanus) by examining the catalytic function of the house finch homologues of these enzymes and tracking their expression in birds growing new feathers. We found that CYP2J19 and BDH1L did not catalyse the production of 3-hydroxy-echinenone (3-OH-echinenone), the primary red plumage pigment of house finches, when provided with common dietary carotenoid substrates. Moreover, gene expression analyses revealed little to no expression of CYP2J19 in liver tissue or growing feather follicles, the putative sites of pigment metabolism in moulting house finches. Finally, although the hepatic mitochondria of house finches have high concentrations of 3-OH-echinenone, observations using fluorescent markers suggest that both CYP2J19 and BDH1L localise to the endomembrane system rather than the mitochondria. We propose that house finches and other birds that deposit 3-OH-echinenone as their primary red plumage pigment use an alternative enzymatic pathway to produce their characteristic red ketocarotenoid-based coloration.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms