{"title":"揭示异多聚细菌铁蛋白纳米笼的结构异质性和进化适应性。","authors":"Yingxi Li, Weiwei Wang, Wei Wang, Xing Zhang, Jinghua Chen, Haichun Gao","doi":"10.1002/advs.202409957","DOIUrl":null,"url":null,"abstract":"<p>Iron-storage bacterioferritins (Bfrs), existing in either homo- or hetero-multimeric form, play a crucial role in iron homeostasis. While the structure and function of homo-multimeric bacterioferritins (homo-Bfrs) have been extensively studied, little is known about the assembly, distinctive characteristics, or evolutionary adaptations of hetero-multimeric bacterioferritins (hetero-Bfrs). Here, the cryo-EM structure and functional characterization of a bacterial hetero-Bfr (<i>So</i>Bfr12) are reported. Compared to homo-Bfrs, although <i>So</i>Bfr12 exhibits a conserved spherical cage-like dodecahedron, its pores through which ions traverse exhibit substantially increased diversity. Importantly, the heterogeneity has significant impacts on sites for ion entry, iron oxidation, and reduction. Moreover, evolutionary analyses reveal that hetero-Bfrs may represent a new class within the Bfr subfamily, consisting of two different types that may have evolved from homo-Bfr through tandem duplication and directly from ferritin (Ftn) via dispersed duplication, respectively. These results reveal remarkable structural and functional features of a hetero-Bfr, enabling the rational design of nanocages for enhanced iron-storing efficiency and for other specific purposes, such as drug delivery vehicles and nanozymes.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 20","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409957","citationCount":"0","resultStr":"{\"title\":\"Unveiling Structural Heterogeneity and Evolutionary Adaptations of Heteromultimeric Bacterioferritin Nanocages\",\"authors\":\"Yingxi Li, Weiwei Wang, Wei Wang, Xing Zhang, Jinghua Chen, Haichun Gao\",\"doi\":\"10.1002/advs.202409957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron-storage bacterioferritins (Bfrs), existing in either homo- or hetero-multimeric form, play a crucial role in iron homeostasis. While the structure and function of homo-multimeric bacterioferritins (homo-Bfrs) have been extensively studied, little is known about the assembly, distinctive characteristics, or evolutionary adaptations of hetero-multimeric bacterioferritins (hetero-Bfrs). Here, the cryo-EM structure and functional characterization of a bacterial hetero-Bfr (<i>So</i>Bfr12) are reported. Compared to homo-Bfrs, although <i>So</i>Bfr12 exhibits a conserved spherical cage-like dodecahedron, its pores through which ions traverse exhibit substantially increased diversity. Importantly, the heterogeneity has significant impacts on sites for ion entry, iron oxidation, and reduction. Moreover, evolutionary analyses reveal that hetero-Bfrs may represent a new class within the Bfr subfamily, consisting of two different types that may have evolved from homo-Bfr through tandem duplication and directly from ferritin (Ftn) via dispersed duplication, respectively. These results reveal remarkable structural and functional features of a hetero-Bfr, enabling the rational design of nanocages for enhanced iron-storing efficiency and for other specific purposes, such as drug delivery vehicles and nanozymes.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 20\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409957\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202409957\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202409957","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling Structural Heterogeneity and Evolutionary Adaptations of Heteromultimeric Bacterioferritin Nanocages
Iron-storage bacterioferritins (Bfrs), existing in either homo- or hetero-multimeric form, play a crucial role in iron homeostasis. While the structure and function of homo-multimeric bacterioferritins (homo-Bfrs) have been extensively studied, little is known about the assembly, distinctive characteristics, or evolutionary adaptations of hetero-multimeric bacterioferritins (hetero-Bfrs). Here, the cryo-EM structure and functional characterization of a bacterial hetero-Bfr (SoBfr12) are reported. Compared to homo-Bfrs, although SoBfr12 exhibits a conserved spherical cage-like dodecahedron, its pores through which ions traverse exhibit substantially increased diversity. Importantly, the heterogeneity has significant impacts on sites for ion entry, iron oxidation, and reduction. Moreover, evolutionary analyses reveal that hetero-Bfrs may represent a new class within the Bfr subfamily, consisting of two different types that may have evolved from homo-Bfr through tandem duplication and directly from ferritin (Ftn) via dispersed duplication, respectively. These results reveal remarkable structural and functional features of a hetero-Bfr, enabling the rational design of nanocages for enhanced iron-storing efficiency and for other specific purposes, such as drug delivery vehicles and nanozymes.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.