在量子计算机上计算酶促反应的能量分布。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-04-08 Epub Date: 2025-03-31 DOI:10.1021/acs.jctc.5c00022
Patrick Ettenhuber, Mads Bøttger Hansen, Pier Paolo Poier, Irfansha Shaik, Stig Elkjaer Rasmussen, Niels Kristian Madsen, Marco Majland, Frank Jensen, Lars Olsen, Nikolaj Thomas Zinner
{"title":"在量子计算机上计算酶促反应的能量分布。","authors":"Patrick Ettenhuber, Mads Bøttger Hansen, Pier Paolo Poier, Irfansha Shaik, Stig Elkjaer Rasmussen, Niels Kristian Madsen, Marco Majland, Frank Jensen, Lars Olsen, Nikolaj Thomas Zinner","doi":"10.1021/acs.jctc.5c00022","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum computing (QC) provides a promising avenue for enabling quantum chemistry calculations, which are classically impossible due to computational complexity that increases exponentially with system size. As fully fault-tolerant algorithms and hardware, for which an exponential speedup is predicted, are currently out of reach, recent research efforts have been dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices to showcase the practical usefulness of such machines. To demonstrate the usefulness of NISQ devices in the field of chemistry, we apply our recently developed FAST-VQE algorithm and a state-of-the-art quantum gate reduction strategy based on propositional satisfiability together with standard optimization tools for the simulation of the rate-determining proton transfer step for CO<sub>2</sub> hydration catalyzed by carbonic anhydrase resulting in the first application of a quantum computing device for the simulation of an enzymatic reaction. To this end, we have combined classical force field simulations with quantum mechanical methods on classical and quantum computers in a hybrid calculation approach. The presented technique significantly enhances the accuracy and capabilities of QC-based molecular modeling and finally pushes it into compelling and realistic applications. The framework is general and can be applied beyond the case of computational enzymology.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"3493-3503"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculating the Energy Profile of an Enzymatic Reaction on a Quantum Computer.\",\"authors\":\"Patrick Ettenhuber, Mads Bøttger Hansen, Pier Paolo Poier, Irfansha Shaik, Stig Elkjaer Rasmussen, Niels Kristian Madsen, Marco Majland, Frank Jensen, Lars Olsen, Nikolaj Thomas Zinner\",\"doi\":\"10.1021/acs.jctc.5c00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum computing (QC) provides a promising avenue for enabling quantum chemistry calculations, which are classically impossible due to computational complexity that increases exponentially with system size. As fully fault-tolerant algorithms and hardware, for which an exponential speedup is predicted, are currently out of reach, recent research efforts have been dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices to showcase the practical usefulness of such machines. To demonstrate the usefulness of NISQ devices in the field of chemistry, we apply our recently developed FAST-VQE algorithm and a state-of-the-art quantum gate reduction strategy based on propositional satisfiability together with standard optimization tools for the simulation of the rate-determining proton transfer step for CO<sub>2</sub> hydration catalyzed by carbonic anhydrase resulting in the first application of a quantum computing device for the simulation of an enzymatic reaction. To this end, we have combined classical force field simulations with quantum mechanical methods on classical and quantum computers in a hybrid calculation approach. The presented technique significantly enhances the accuracy and capabilities of QC-based molecular modeling and finally pushes it into compelling and realistic applications. The framework is general and can be applied beyond the case of computational enzymology.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"3493-3503\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子计算(QC)为实现量子化学计算提供了一个有前途的途径,由于计算复杂性随着系统大小呈指数增长,量子化学计算在传统上是不可能的。由于完全容错的算法和硬件(预计会有指数级的加速)目前还遥不可及,最近的研究工作一直致力于开发和缩放噪声中等规模量子(NISQ)设备的算法,以展示此类机器的实际用途。为了证明NISQ设备在化学领域的实用性,我们应用我们最近开发的FAST-VQE算法和基于命题可满足性的最先进的量子门还原策略以及标准优化工具来模拟碳酸酐酶催化的CO2水合作用的速率决定质子转移步骤,从而首次应用量子计算设备来模拟酶促反应。为此,我们将经典力场模拟与量子力学方法结合在经典计算机和量子计算机上,采用混合计算方法。该技术显著提高了基于质谱仪的分子建模的准确性和能力,并最终将其推向令人信服的现实应用。该框架是通用的,可以应用于计算酶学之外的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculating the Energy Profile of an Enzymatic Reaction on a Quantum Computer.

Quantum computing (QC) provides a promising avenue for enabling quantum chemistry calculations, which are classically impossible due to computational complexity that increases exponentially with system size. As fully fault-tolerant algorithms and hardware, for which an exponential speedup is predicted, are currently out of reach, recent research efforts have been dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices to showcase the practical usefulness of such machines. To demonstrate the usefulness of NISQ devices in the field of chemistry, we apply our recently developed FAST-VQE algorithm and a state-of-the-art quantum gate reduction strategy based on propositional satisfiability together with standard optimization tools for the simulation of the rate-determining proton transfer step for CO2 hydration catalyzed by carbonic anhydrase resulting in the first application of a quantum computing device for the simulation of an enzymatic reaction. To this end, we have combined classical force field simulations with quantum mechanical methods on classical and quantum computers in a hybrid calculation approach. The presented technique significantly enhances the accuracy and capabilities of QC-based molecular modeling and finally pushes it into compelling and realistic applications. The framework is general and can be applied beyond the case of computational enzymology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信