1T-FeS2单层原子结构的反应性分子束外延生长、moirir和插层解耦。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-15 Epub Date: 2025-03-31 DOI:10.1021/acsnano.4c17873
Mahesh Krishna Prabhu, Philippe David, Valérie Guisset, Lucio Martinelli, Johann Coraux, Gilles Renaud
{"title":"1T-FeS2单层原子结构的反应性分子束外延生长、moirir和插层解耦。","authors":"Mahesh Krishna Prabhu, Philippe David, Valérie Guisset, Lucio Martinelli, Johann Coraux, Gilles Renaud","doi":"10.1021/acsnano.4c17873","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) iron disulfide (FeS<sub>2</sub>), in its 1<i>T</i> polymorph, is a promising candidate for high-Curie-temperature ferromagnetic applications. Unlike typical van der Waals materials, FeS<sub>2</sub> lacks a naturally lamellar bulk structure and thus cannot be prepared by exfoliation. Consequently, it exists solely as a synthetic 2D magnet, primarily produced via chemical vapor deposition. Here, we propose an alternative synthesis method: reactive molecular beam epitaxy, where an iron layer predeposited on a Au(111) substrate is sulfurized to form FeS<sub>2</sub>. Structural and compositional analyses of the resulting 2D layer─employing scanning tunneling microscopy, electron diffraction, Auger electron spectroscopy, and synchrotron surface X-ray diffraction─confirm a nominal Fe ratio of 1:2, essential for achieving a high Curie temperature. Modeling and fitting the three-dimensional X-ray diffraction data further reveals that the layer crystallizes in the desired 1<i>T</i> polymorph. This 1<i>T</i>-FeS<sub>2</sub> grown on Au(111) exhibits exceptional crystalline quality, largely surpassing that of other 2D transition metal dichalcogenides epitaxially grown on substrates. In addition, it shows pronounced atomic distortions from an ideal 1<i>T</i> structure, attributed to the strain induced by the substrate to achieve a perfectly commensurate 5 × 5 moiré pattern. The 1<i>T</i>-FeS<sub>2</sub> and moiré atomic structures are fully determined with high accuracy on atomic coordinates. Finally, through Cs intercalation, we demonstrate complete decoupling of the FeS<sub>2</sub> layer from the substrate and the release of heteroepitaxial strains.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"13941-13951"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive Molecular Beam Epitaxy Growth of a 1T-FeS<sub>2</sub> Single-Layer-Atomic Structure, Moiré, and Decoupling via Intercalation.\",\"authors\":\"Mahesh Krishna Prabhu, Philippe David, Valérie Guisset, Lucio Martinelli, Johann Coraux, Gilles Renaud\",\"doi\":\"10.1021/acsnano.4c17873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) iron disulfide (FeS<sub>2</sub>), in its 1<i>T</i> polymorph, is a promising candidate for high-Curie-temperature ferromagnetic applications. Unlike typical van der Waals materials, FeS<sub>2</sub> lacks a naturally lamellar bulk structure and thus cannot be prepared by exfoliation. Consequently, it exists solely as a synthetic 2D magnet, primarily produced via chemical vapor deposition. Here, we propose an alternative synthesis method: reactive molecular beam epitaxy, where an iron layer predeposited on a Au(111) substrate is sulfurized to form FeS<sub>2</sub>. Structural and compositional analyses of the resulting 2D layer─employing scanning tunneling microscopy, electron diffraction, Auger electron spectroscopy, and synchrotron surface X-ray diffraction─confirm a nominal Fe ratio of 1:2, essential for achieving a high Curie temperature. Modeling and fitting the three-dimensional X-ray diffraction data further reveals that the layer crystallizes in the desired 1<i>T</i> polymorph. This 1<i>T</i>-FeS<sub>2</sub> grown on Au(111) exhibits exceptional crystalline quality, largely surpassing that of other 2D transition metal dichalcogenides epitaxially grown on substrates. In addition, it shows pronounced atomic distortions from an ideal 1<i>T</i> structure, attributed to the strain induced by the substrate to achieve a perfectly commensurate 5 × 5 moiré pattern. The 1<i>T</i>-FeS<sub>2</sub> and moiré atomic structures are fully determined with high accuracy on atomic coordinates. Finally, through Cs intercalation, we demonstrate complete decoupling of the FeS<sub>2</sub> layer from the substrate and the release of heteroepitaxial strains.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"13941-13951\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c17873\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17873","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)二硫化铁(FeS2)在其1T多晶态下,是高居里温度铁磁应用的有希望的候选者。与典型的范德华材料不同,FeS2缺乏天然的层状体结构,因此不能通过剥离制备。因此,它仅作为合成二维磁铁存在,主要通过化学气相沉积生产。在这里,我们提出了一种替代的合成方法:反应性分子束外延,其中预先沉积在Au(111)衬底上的铁层被硫化形成FeS2。利用扫描隧道显微镜、电子衍射、俄杰电子能谱和同步加速器表面x射线衍射对所得到的二维层进行结构和成分分析,证实了名义上的铁比为1:2,这是实现高居里温度所必需的。对三维x射线衍射数据的建模和拟合进一步表明,该层以所需的1T晶型结晶。在Au(111)上生长的1T-FeS2具有优异的晶体质量,大大超过了在衬底上外延生长的其他2D过渡金属二硫族化合物。此外,它显示出明显的原子畸变,从理想的1T结构,归因于由衬底引起的应变,以达到完美相称的5 × 5莫尔条纹。在原子坐标上高精度地完全确定了1T-FeS2和moirir的原子结构。最后,通过Cs嵌入,我们证明了FeS2层与衬底完全解耦,并释放了异质外延应变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactive Molecular Beam Epitaxy Growth of a 1T-FeS2 Single-Layer-Atomic Structure, Moiré, and Decoupling via Intercalation.

Two-dimensional (2D) iron disulfide (FeS2), in its 1T polymorph, is a promising candidate for high-Curie-temperature ferromagnetic applications. Unlike typical van der Waals materials, FeS2 lacks a naturally lamellar bulk structure and thus cannot be prepared by exfoliation. Consequently, it exists solely as a synthetic 2D magnet, primarily produced via chemical vapor deposition. Here, we propose an alternative synthesis method: reactive molecular beam epitaxy, where an iron layer predeposited on a Au(111) substrate is sulfurized to form FeS2. Structural and compositional analyses of the resulting 2D layer─employing scanning tunneling microscopy, electron diffraction, Auger electron spectroscopy, and synchrotron surface X-ray diffraction─confirm a nominal Fe ratio of 1:2, essential for achieving a high Curie temperature. Modeling and fitting the three-dimensional X-ray diffraction data further reveals that the layer crystallizes in the desired 1T polymorph. This 1T-FeS2 grown on Au(111) exhibits exceptional crystalline quality, largely surpassing that of other 2D transition metal dichalcogenides epitaxially grown on substrates. In addition, it shows pronounced atomic distortions from an ideal 1T structure, attributed to the strain induced by the substrate to achieve a perfectly commensurate 5 × 5 moiré pattern. The 1T-FeS2 and moiré atomic structures are fully determined with high accuracy on atomic coordinates. Finally, through Cs intercalation, we demonstrate complete decoupling of the FeS2 layer from the substrate and the release of heteroepitaxial strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信