Wardina Humayrah , Nindy Sabrina , Megah Stefani , Nurpudji Astuti Taslim , Reggie Surya , Matthew Nathaniel Handoko , Vincent Lau , Hardinsyah Hardinsyah , Trina Ekawati Tallei , Rony Abdi Syahputra , Fahrul Nurkolis
{"title":"微核糖核酸和小干扰核糖核酸在肥胖精准营养管理中的作用。","authors":"Wardina Humayrah , Nindy Sabrina , Megah Stefani , Nurpudji Astuti Taslim , Reggie Surya , Matthew Nathaniel Handoko , Vincent Lau , Hardinsyah Hardinsyah , Trina Ekawati Tallei , Rony Abdi Syahputra , Fahrul Nurkolis","doi":"10.1016/j.clnesp.2025.03.049","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & aims</h3><div>Precision nutrition aims to tailor dietary interventions based on genetic and molecular profiles. MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are emerging as critical tools in precision obesity management. miRNAs serve as biomarkers for predicting dietary response and obesity risk, while siRNAs provide a targeted approach to silencing obesity-related genes. This review explores the mechanisms, applications, and potential of integrating miRNA and siRNA in personalized dietary strategies to combat obesity.</div></div><div><h3>Methods</h3><div>A comprehensive literature review was conducted using Boolean operations to identify studies on miRNAs, siRNAs, and their roles in precision nutrition. The review focused on molecular mechanisms, clinical applications, challenges, and future directions in integrating miRNA detection and siRNA therapy for obesity management.</div></div><div><h3>Results</h3><div>miRNAs regulate gene expression related to lipid metabolism, adipogenesis, and insulin sensitivity, with miRNA-33 and miRNA-103/107 being notable examples. siRNAs offer precise gene silencing for targets like SREBP-1c and PPARγ, addressing metabolic pathways resistant to dietary interventions. The synergistic integration of miRNAs as biomarkers and siRNAs as therapeutic tools enhances the personalization and efficacy of obesity management.</div></div><div><h3>Conclusions</h3><div>The dual application of miRNAs and siRNAs in precision nutrition represents a transformative approach to obesity management. While challenges such as molecular stability and delivery systems persist, advancements in RNA technology and clinical research promise to revolutionize personalized dietary strategies. Future research should focus on large-scale trials and ethical considerations to ensure equitable and effective implementation.</div></div>","PeriodicalId":10352,"journal":{"name":"Clinical nutrition ESPEN","volume":"67 ","pages":"Pages 463-475"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of micro-ribonucleic acid and small interfering-ribonucleic acid in precision nutrition for obesity management\",\"authors\":\"Wardina Humayrah , Nindy Sabrina , Megah Stefani , Nurpudji Astuti Taslim , Reggie Surya , Matthew Nathaniel Handoko , Vincent Lau , Hardinsyah Hardinsyah , Trina Ekawati Tallei , Rony Abdi Syahputra , Fahrul Nurkolis\",\"doi\":\"10.1016/j.clnesp.2025.03.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background & aims</h3><div>Precision nutrition aims to tailor dietary interventions based on genetic and molecular profiles. MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are emerging as critical tools in precision obesity management. miRNAs serve as biomarkers for predicting dietary response and obesity risk, while siRNAs provide a targeted approach to silencing obesity-related genes. This review explores the mechanisms, applications, and potential of integrating miRNA and siRNA in personalized dietary strategies to combat obesity.</div></div><div><h3>Methods</h3><div>A comprehensive literature review was conducted using Boolean operations to identify studies on miRNAs, siRNAs, and their roles in precision nutrition. The review focused on molecular mechanisms, clinical applications, challenges, and future directions in integrating miRNA detection and siRNA therapy for obesity management.</div></div><div><h3>Results</h3><div>miRNAs regulate gene expression related to lipid metabolism, adipogenesis, and insulin sensitivity, with miRNA-33 and miRNA-103/107 being notable examples. siRNAs offer precise gene silencing for targets like SREBP-1c and PPARγ, addressing metabolic pathways resistant to dietary interventions. The synergistic integration of miRNAs as biomarkers and siRNAs as therapeutic tools enhances the personalization and efficacy of obesity management.</div></div><div><h3>Conclusions</h3><div>The dual application of miRNAs and siRNAs in precision nutrition represents a transformative approach to obesity management. While challenges such as molecular stability and delivery systems persist, advancements in RNA technology and clinical research promise to revolutionize personalized dietary strategies. Future research should focus on large-scale trials and ethical considerations to ensure equitable and effective implementation.</div></div>\",\"PeriodicalId\":10352,\"journal\":{\"name\":\"Clinical nutrition ESPEN\",\"volume\":\"67 \",\"pages\":\"Pages 463-475\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical nutrition ESPEN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405457725001408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nutrition ESPEN","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405457725001408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
The role of micro-ribonucleic acid and small interfering-ribonucleic acid in precision nutrition for obesity management
Background & aims
Precision nutrition aims to tailor dietary interventions based on genetic and molecular profiles. MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are emerging as critical tools in precision obesity management. miRNAs serve as biomarkers for predicting dietary response and obesity risk, while siRNAs provide a targeted approach to silencing obesity-related genes. This review explores the mechanisms, applications, and potential of integrating miRNA and siRNA in personalized dietary strategies to combat obesity.
Methods
A comprehensive literature review was conducted using Boolean operations to identify studies on miRNAs, siRNAs, and their roles in precision nutrition. The review focused on molecular mechanisms, clinical applications, challenges, and future directions in integrating miRNA detection and siRNA therapy for obesity management.
Results
miRNAs regulate gene expression related to lipid metabolism, adipogenesis, and insulin sensitivity, with miRNA-33 and miRNA-103/107 being notable examples. siRNAs offer precise gene silencing for targets like SREBP-1c and PPARγ, addressing metabolic pathways resistant to dietary interventions. The synergistic integration of miRNAs as biomarkers and siRNAs as therapeutic tools enhances the personalization and efficacy of obesity management.
Conclusions
The dual application of miRNAs and siRNAs in precision nutrition represents a transformative approach to obesity management. While challenges such as molecular stability and delivery systems persist, advancements in RNA technology and clinical research promise to revolutionize personalized dietary strategies. Future research should focus on large-scale trials and ethical considerations to ensure equitable and effective implementation.
期刊介绍:
Clinical Nutrition ESPEN is an electronic-only journal and is an official publication of the European Society for Clinical Nutrition and Metabolism (ESPEN). Nutrition and nutritional care have gained wide clinical and scientific interest during the past decades. The increasing knowledge of metabolic disturbances and nutritional assessment in chronic and acute diseases has stimulated rapid advances in design, development and clinical application of nutritional support. The aims of ESPEN are to encourage the rapid diffusion of knowledge and its application in the field of clinical nutrition and metabolism. Published bimonthly, Clinical Nutrition ESPEN focuses on publishing articles on the relationship between nutrition and disease in the setting of basic science and clinical practice. Clinical Nutrition ESPEN is available to all members of ESPEN and to all subscribers of Clinical Nutrition.