植物抗逆性的脯氨酸标记

Naveed Ul Mushtaq, Seerat Saleem, Aadil Rasool, Wasifa Hafiz Shah, Inayatullah Tahir, Chandra Shekhar Seth, Reiaz Ul Rehman
{"title":"植物抗逆性的脯氨酸标记","authors":"Naveed Ul Mushtaq,&nbsp;Seerat Saleem,&nbsp;Aadil Rasool,&nbsp;Wasifa Hafiz Shah,&nbsp;Inayatullah Tahir,&nbsp;Chandra Shekhar Seth,&nbsp;Reiaz Ul Rehman","doi":"10.1155/ijog/9348557","DOIUrl":null,"url":null,"abstract":"<p>In environments with high levels of stress conditions, plants accumulate various metabolic products under stress conditions. Among these products, amino acids have a cardinal role in supporting and maintaining plant developmental processes. The increase in proline content and stress tolerance in plants has been found optimistic, suggesting the importance of proline in mitigating stress through osmotic adjustments. Exogenous application and pretreatment of plants with proline increase growth and development under various stressful conditions, but excessive proline has negative influence on growth. Proline has two biosynthetic routes: glutamate or the ornithine pathway, and whether plants synthesize proline by glutamate or ornithine precursors is still debatable as relatively little is known about it. Plants have the innate machinery to synthesize proline from both pathways, but the switch of a particular pathway under which it can be activated and deactivated depends upon various factors. Therefore, in this review, we elucidate the importance of proline in stress mitigation; the optimal amount of proline required for maximum benefit; levels at which it inhibits the growth, conditions, and factors that regulate proline biosynthesis; and lastly, how we can benefit from all these answers to obtain better stress tolerance in plants.</p>","PeriodicalId":55239,"journal":{"name":"Comparative and Functional Genomics","volume":"2025 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ijog/9348557","citationCount":"0","resultStr":"{\"title\":\"Proline Tagging for Stress Tolerance in Plants\",\"authors\":\"Naveed Ul Mushtaq,&nbsp;Seerat Saleem,&nbsp;Aadil Rasool,&nbsp;Wasifa Hafiz Shah,&nbsp;Inayatullah Tahir,&nbsp;Chandra Shekhar Seth,&nbsp;Reiaz Ul Rehman\",\"doi\":\"10.1155/ijog/9348557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In environments with high levels of stress conditions, plants accumulate various metabolic products under stress conditions. Among these products, amino acids have a cardinal role in supporting and maintaining plant developmental processes. The increase in proline content and stress tolerance in plants has been found optimistic, suggesting the importance of proline in mitigating stress through osmotic adjustments. Exogenous application and pretreatment of plants with proline increase growth and development under various stressful conditions, but excessive proline has negative influence on growth. Proline has two biosynthetic routes: glutamate or the ornithine pathway, and whether plants synthesize proline by glutamate or ornithine precursors is still debatable as relatively little is known about it. Plants have the innate machinery to synthesize proline from both pathways, but the switch of a particular pathway under which it can be activated and deactivated depends upon various factors. Therefore, in this review, we elucidate the importance of proline in stress mitigation; the optimal amount of proline required for maximum benefit; levels at which it inhibits the growth, conditions, and factors that regulate proline biosynthesis; and lastly, how we can benefit from all these answers to obtain better stress tolerance in plants.</p>\",\"PeriodicalId\":55239,\"journal\":{\"name\":\"Comparative and Functional Genomics\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ijog/9348557\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative and Functional Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/ijog/9348557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative and Functional Genomics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ijog/9348557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高水平胁迫条件下,植物在胁迫条件下积累各种代谢产物。在这些产物中,氨基酸在支持和维持植物发育过程中起着重要作用。脯氨酸含量的增加和植物抗逆性的提高是乐观的,这表明脯氨酸在通过渗透调节缓解逆境中的重要性。脯氨酸外源处理和预处理能促进植株在各种胁迫条件下的生长发育,但脯氨酸过量对植株生长有负面影响。脯氨酸有两种生物合成途径:谷氨酸或鸟氨酸途径,植物是通过谷氨酸合成脯氨酸还是通过鸟氨酸前体合成脯氨酸仍然存在争议,因为对它的了解相对较少。植物具有从这两种途径合成脯氨酸的先天机制,但在特定途径下激活和停用脯氨酸的开关取决于各种因素。因此,在这篇综述中,我们阐明了脯氨酸在应激缓解中的重要性;获得最大效益所需的最佳脯氨酸量;抑制生长的水平、条件和调节脯氨酸生物合成的因素;最后,我们如何从所有这些答案中受益,以获得更好的植物抗逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Proline Tagging for Stress Tolerance in Plants

Proline Tagging for Stress Tolerance in Plants

In environments with high levels of stress conditions, plants accumulate various metabolic products under stress conditions. Among these products, amino acids have a cardinal role in supporting and maintaining plant developmental processes. The increase in proline content and stress tolerance in plants has been found optimistic, suggesting the importance of proline in mitigating stress through osmotic adjustments. Exogenous application and pretreatment of plants with proline increase growth and development under various stressful conditions, but excessive proline has negative influence on growth. Proline has two biosynthetic routes: glutamate or the ornithine pathway, and whether plants synthesize proline by glutamate or ornithine precursors is still debatable as relatively little is known about it. Plants have the innate machinery to synthesize proline from both pathways, but the switch of a particular pathway under which it can be activated and deactivated depends upon various factors. Therefore, in this review, we elucidate the importance of proline in stress mitigation; the optimal amount of proline required for maximum benefit; levels at which it inhibits the growth, conditions, and factors that regulate proline biosynthesis; and lastly, how we can benefit from all these answers to obtain better stress tolerance in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comparative and Functional Genomics
Comparative and Functional Genomics 生物-生化与分子生物学
自引率
0.00%
发文量
0
审稿时长
2 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信