DBM中的臂有多长?

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ilya Losev, Stanislav Smirnov
{"title":"DBM中的臂有多长?","authors":"Ilya Losev,&nbsp;Stanislav Smirnov","doi":"10.1007/s00220-025-05276-8","DOIUrl":null,"url":null,"abstract":"<div><p>Diffusion limited aggregation and its generalization, dielectric-breakdown model play an important role in physics, approximating a range of natural phenomena. Yet little is known about them, with the famous Kesten’s estimate on the DLAs growth being perhaps the most important result. Using a different approach we prove a generalisation of this result for the DBM in <span>\\(\\mathbb {Z}^2\\)</span> and <span>\\(\\mathbb {Z}^3\\)</span>. The obtained estimate depends on the DBM parameter, and matches with the best known results for DLA. In particular, since our methods are different from Kesten’s, our argument provides a new proof for Kesten’s result both in <span>\\(\\mathbb {Z}^2\\)</span> and <span>\\(\\mathbb {Z}^3\\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05276-8.pdf","citationCount":"0","resultStr":"{\"title\":\"How Long are the Arms in DBM?\",\"authors\":\"Ilya Losev,&nbsp;Stanislav Smirnov\",\"doi\":\"10.1007/s00220-025-05276-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diffusion limited aggregation and its generalization, dielectric-breakdown model play an important role in physics, approximating a range of natural phenomena. Yet little is known about them, with the famous Kesten’s estimate on the DLAs growth being perhaps the most important result. Using a different approach we prove a generalisation of this result for the DBM in <span>\\\\(\\\\mathbb {Z}^2\\\\)</span> and <span>\\\\(\\\\mathbb {Z}^3\\\\)</span>. The obtained estimate depends on the DBM parameter, and matches with the best known results for DLA. In particular, since our methods are different from Kesten’s, our argument provides a new proof for Kesten’s result both in <span>\\\\(\\\\mathbb {Z}^2\\\\)</span> and <span>\\\\(\\\\mathbb {Z}^3\\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05276-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05276-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05276-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

扩散限制聚集及其推广,介质击穿模型在物理学中起着重要作用,它近似于一系列自然现象。然而,人们对它们知之甚少,而著名的Kesten对dla增长的估计可能是最重要的结果。使用不同的方法,我们在\(\mathbb {Z}^2\)和\(\mathbb {Z}^3\)中证明了这个结果的泛化。得到的估计依赖于DBM参数,并且与DLA的最佳已知结果相匹配。特别是,由于我们的方法与Kesten的方法不同,我们的论证为\(\mathbb {Z}^2\)和\(\mathbb {Z}^3\)中Kesten的结果提供了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Long are the Arms in DBM?

Diffusion limited aggregation and its generalization, dielectric-breakdown model play an important role in physics, approximating a range of natural phenomena. Yet little is known about them, with the famous Kesten’s estimate on the DLAs growth being perhaps the most important result. Using a different approach we prove a generalisation of this result for the DBM in \(\mathbb {Z}^2\) and \(\mathbb {Z}^3\). The obtained estimate depends on the DBM parameter, and matches with the best known results for DLA. In particular, since our methods are different from Kesten’s, our argument provides a new proof for Kesten’s result both in \(\mathbb {Z}^2\) and \(\mathbb {Z}^3\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信