{"title":"DBM中的臂有多长?","authors":"Ilya Losev, Stanislav Smirnov","doi":"10.1007/s00220-025-05276-8","DOIUrl":null,"url":null,"abstract":"<div><p>Diffusion limited aggregation and its generalization, dielectric-breakdown model play an important role in physics, approximating a range of natural phenomena. Yet little is known about them, with the famous Kesten’s estimate on the DLAs growth being perhaps the most important result. Using a different approach we prove a generalisation of this result for the DBM in <span>\\(\\mathbb {Z}^2\\)</span> and <span>\\(\\mathbb {Z}^3\\)</span>. The obtained estimate depends on the DBM parameter, and matches with the best known results for DLA. In particular, since our methods are different from Kesten’s, our argument provides a new proof for Kesten’s result both in <span>\\(\\mathbb {Z}^2\\)</span> and <span>\\(\\mathbb {Z}^3\\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05276-8.pdf","citationCount":"0","resultStr":"{\"title\":\"How Long are the Arms in DBM?\",\"authors\":\"Ilya Losev, Stanislav Smirnov\",\"doi\":\"10.1007/s00220-025-05276-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diffusion limited aggregation and its generalization, dielectric-breakdown model play an important role in physics, approximating a range of natural phenomena. Yet little is known about them, with the famous Kesten’s estimate on the DLAs growth being perhaps the most important result. Using a different approach we prove a generalisation of this result for the DBM in <span>\\\\(\\\\mathbb {Z}^2\\\\)</span> and <span>\\\\(\\\\mathbb {Z}^3\\\\)</span>. The obtained estimate depends on the DBM parameter, and matches with the best known results for DLA. In particular, since our methods are different from Kesten’s, our argument provides a new proof for Kesten’s result both in <span>\\\\(\\\\mathbb {Z}^2\\\\)</span> and <span>\\\\(\\\\mathbb {Z}^3\\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05276-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05276-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05276-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Diffusion limited aggregation and its generalization, dielectric-breakdown model play an important role in physics, approximating a range of natural phenomena. Yet little is known about them, with the famous Kesten’s estimate on the DLAs growth being perhaps the most important result. Using a different approach we prove a generalisation of this result for the DBM in \(\mathbb {Z}^2\) and \(\mathbb {Z}^3\). The obtained estimate depends on the DBM parameter, and matches with the best known results for DLA. In particular, since our methods are different from Kesten’s, our argument provides a new proof for Kesten’s result both in \(\mathbb {Z}^2\) and \(\mathbb {Z}^3\).
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.