{"title":"相空间中Helmholtz-Kirchhoff点涡的渐近性","authors":"Chanwoo Kim, Trinh T. Nguyen","doi":"10.1007/s00220-025-05264-y","DOIUrl":null,"url":null,"abstract":"<div><p>A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz–Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier–Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Helmholtz–Kirchhoff Point-Vortices in the Phase Space\",\"authors\":\"Chanwoo Kim, Trinh T. Nguyen\",\"doi\":\"10.1007/s00220-025-05264-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz–Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier–Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05264-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05264-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Asymptotics of Helmholtz–Kirchhoff Point-Vortices in the Phase Space
A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz–Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier–Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.