相空间中Helmholtz-Kirchhoff点涡的渐近性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Chanwoo Kim, Trinh T. Nguyen
{"title":"相空间中Helmholtz-Kirchhoff点涡的渐近性","authors":"Chanwoo Kim,&nbsp;Trinh T. Nguyen","doi":"10.1007/s00220-025-05264-y","DOIUrl":null,"url":null,"abstract":"<div><p>A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz–Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier–Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Helmholtz–Kirchhoff Point-Vortices in the Phase Space\",\"authors\":\"Chanwoo Kim,&nbsp;Trinh T. Nguyen\",\"doi\":\"10.1007/s00220-025-05264-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz–Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier–Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05264-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05264-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

从动力学方程中严格推导点涡系统一直是一个具有挑战性的开放问题,因为在无粘极限中存在奇异层,在玻尔兹曼方程中会产生很大的速度梯度。本文从玻尔兹曼方程的水动力极限出发,导出了Helmholtz-Kirchhoff点涡系统。我们通过与二维Navier-Stokes方程的点涡解相关的hilbert型展开构造Boltzmann解。给出了具有小Strouhal数和Knudsen数的玻尔兹曼方程解的精确的逐点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of Helmholtz–Kirchhoff Point-Vortices in the Phase Space

A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz–Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier–Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信