相对加权拓扑压力的变分原理

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Zhengyu Yin
{"title":"相对加权拓扑压力的变分原理","authors":"Zhengyu Yin","doi":"10.1007/s10955-025-03434-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Tsukamoto (New approach to weighted topological entropy and pressure, Ergod Theory Dyn Syst 43:1004–1034, 2023) introduces a new approach to defining weighted topological entropy and pressure. Inspired by the ideas of Tsukamoto, we define the relative weighted topological entropy and pressure for factor maps and establish several variational principles. One of these results relate to a question raised by Feng and Huang (Variational principle for weighted topological pressure, J Math Pures Appl 106:411–452, 2016), namely, whether there exists a relative version of the weighted variational principle. In this paper, we try to establish such a variational principle. Furthermore, we generalize the Ledrappier and Walters type relative variational principle to the weighted version.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03434-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Variational Principles of Relative Weighted Topological Pressure\",\"authors\":\"Zhengyu Yin\",\"doi\":\"10.1007/s10955-025-03434-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, Tsukamoto (New approach to weighted topological entropy and pressure, Ergod Theory Dyn Syst 43:1004–1034, 2023) introduces a new approach to defining weighted topological entropy and pressure. Inspired by the ideas of Tsukamoto, we define the relative weighted topological entropy and pressure for factor maps and establish several variational principles. One of these results relate to a question raised by Feng and Huang (Variational principle for weighted topological pressure, J Math Pures Appl 106:411–452, 2016), namely, whether there exists a relative version of the weighted variational principle. In this paper, we try to establish such a variational principle. Furthermore, we generalize the Ledrappier and Walters type relative variational principle to the weighted version.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-025-03434-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03434-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03434-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近,Tsukamoto (New approach to weighted topology entropy and pressure, Ergod Theory Dyn system, 43:1004 - 1034,2023)介绍了一种新的加权拓扑熵和压力的定义方法。受冢本的思想启发,我们定义了因子映射的相对加权拓扑熵和压力,并建立了几个变分原理。其中一个结果与Feng和Huang提出的一个问题有关(加权拓扑压力的变分原理,J Math Pures applied 106:411-452, 2016),即是否存在加权变分原理的相对版本。在本文中,我们试图建立这样一个变分原理。进一步,我们将Ledrappier和Walters型相对变分原理推广到加权版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Principles of Relative Weighted Topological Pressure

Recently, Tsukamoto (New approach to weighted topological entropy and pressure, Ergod Theory Dyn Syst 43:1004–1034, 2023) introduces a new approach to defining weighted topological entropy and pressure. Inspired by the ideas of Tsukamoto, we define the relative weighted topological entropy and pressure for factor maps and establish several variational principles. One of these results relate to a question raised by Feng and Huang (Variational principle for weighted topological pressure, J Math Pures Appl 106:411–452, 2016), namely, whether there exists a relative version of the weighted variational principle. In this paper, we try to establish such a variational principle. Furthermore, we generalize the Ledrappier and Walters type relative variational principle to the weighted version.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信