锐线麦克斯韦-布洛赫方程的零背景孤子

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Sitai Li
{"title":"锐线麦克斯韦-布洛赫方程的零背景孤子","authors":"Sitai Li","doi":"10.1007/s00220-025-05281-x","DOIUrl":null,"url":null,"abstract":"<div><p>This work is devoted to systematically study general <i>N</i>-soliton solutions possibly containing multiple degenerate soliton groups (DSGs), in the context of the sharp-line Maxwell–Bloch equations with a zero background. We also show that results can be readily migrated to other integrable systems, with the same non-self-adjoint Zakharov–Shabat scattering problem or alike. Results for the focusing nonlinear Schrödinger equation and the complex modified Korteweg–De Vries equation are obtained as explicit examples for demonstrative purposes. A DSG is a localized coherent nonlinear traveling-wave structure, comprised of inseparable solitons with identical velocities. Hence, DSGs are generalizations of single solitons (considered as 1-DSGs), and form fundamental building blocks of solutions of many integrable systems. We provide an explicit formula for an <i>N</i>-DSG and its center. With the help of the Deift–Zhou’s nonlinear steepest descent method, we prove the localization of DSGs, and calculate the long-time asymptotics for an arbitrary <i>N</i>-soliton solutions. It is shown that the solution becomes a linear combination of multiple DSGs in the distant past and future, with explicit formulæ for the asymptotic phase shift for each DSG. Other generalizations of a single soliton are also discussed, such as <i>N</i>th-order solitons and soliton gases. We prove that every <i>N</i>th-order soliton can be obtained by fusion of eigenvalues of <i>N</i>-soliton solutions, with proper rescalings of norming constants, and demonstrate that soliton-gas solution can be considered as limits of <i>N</i>-soliton solutions as <span>\\(N\\rightarrow +\\infty \\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Zero-Background Solitons of the Sharp-Line Maxwell–Bloch Equations\",\"authors\":\"Sitai Li\",\"doi\":\"10.1007/s00220-025-05281-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work is devoted to systematically study general <i>N</i>-soliton solutions possibly containing multiple degenerate soliton groups (DSGs), in the context of the sharp-line Maxwell–Bloch equations with a zero background. We also show that results can be readily migrated to other integrable systems, with the same non-self-adjoint Zakharov–Shabat scattering problem or alike. Results for the focusing nonlinear Schrödinger equation and the complex modified Korteweg–De Vries equation are obtained as explicit examples for demonstrative purposes. A DSG is a localized coherent nonlinear traveling-wave structure, comprised of inseparable solitons with identical velocities. Hence, DSGs are generalizations of single solitons (considered as 1-DSGs), and form fundamental building blocks of solutions of many integrable systems. We provide an explicit formula for an <i>N</i>-DSG and its center. With the help of the Deift–Zhou’s nonlinear steepest descent method, we prove the localization of DSGs, and calculate the long-time asymptotics for an arbitrary <i>N</i>-soliton solutions. It is shown that the solution becomes a linear combination of multiple DSGs in the distant past and future, with explicit formulæ for the asymptotic phase shift for each DSG. Other generalizations of a single soliton are also discussed, such as <i>N</i>th-order solitons and soliton gases. We prove that every <i>N</i>th-order soliton can be obtained by fusion of eigenvalues of <i>N</i>-soliton solutions, with proper rescalings of norming constants, and demonstrate that soliton-gas solution can be considered as limits of <i>N</i>-soliton solutions as <span>\\\\(N\\\\rightarrow +\\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05281-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05281-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文系统地研究了零背景下锐线麦克斯韦-布洛赫方程中可能包含多个简并孤子群(dsg)的一般n孤子解。我们还证明了结果可以很容易地迁移到具有相同非自伴随Zakharov-Shabat散射问题或类似问题的其他可积系统。本文给出了聚焦非线性Schrödinger方程和复修正Korteweg-De Vries方程的结果,作为明确的例子进行说明。DSG是一种局域相干非线性行波结构,由具有相同速度的不可分孤子组成。因此,dsg是单孤子(被认为是1- dsg)的推广,并且构成了许多可积系统解的基本构建块。我们给出了N-DSG及其中心的显式公式。利用Deift-Zhou的非线性最陡下降方法,证明了dsg的局域性,并计算了任意n -孤子解的长时间渐近性。结果表明,该解成为遥远的过去和未来的多个DSG的线性组合,并具有每个DSG的渐近相移的显式公式。本文还讨论了单孤子的其他推广,如n阶孤子和孤子气体。我们证明了每一个n阶孤子都可以通过n孤子解的特征值的融合得到,适当地重新标化赋范常数,并证明了孤子-气体解可以被认为是n孤子解的极限\(N\rightarrow +\infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Zero-Background Solitons of the Sharp-Line Maxwell–Bloch Equations

This work is devoted to systematically study general N-soliton solutions possibly containing multiple degenerate soliton groups (DSGs), in the context of the sharp-line Maxwell–Bloch equations with a zero background. We also show that results can be readily migrated to other integrable systems, with the same non-self-adjoint Zakharov–Shabat scattering problem or alike. Results for the focusing nonlinear Schrödinger equation and the complex modified Korteweg–De Vries equation are obtained as explicit examples for demonstrative purposes. A DSG is a localized coherent nonlinear traveling-wave structure, comprised of inseparable solitons with identical velocities. Hence, DSGs are generalizations of single solitons (considered as 1-DSGs), and form fundamental building blocks of solutions of many integrable systems. We provide an explicit formula for an N-DSG and its center. With the help of the Deift–Zhou’s nonlinear steepest descent method, we prove the localization of DSGs, and calculate the long-time asymptotics for an arbitrary N-soliton solutions. It is shown that the solution becomes a linear combination of multiple DSGs in the distant past and future, with explicit formulæ for the asymptotic phase shift for each DSG. Other generalizations of a single soliton are also discussed, such as Nth-order solitons and soliton gases. We prove that every Nth-order soliton can be obtained by fusion of eigenvalues of N-soliton solutions, with proper rescalings of norming constants, and demonstrate that soliton-gas solution can be considered as limits of N-soliton solutions as \(N\rightarrow +\infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信