随机动力学的局部poincar不等式及其在Ising模型中的应用

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Kai-yuan Cui, Fu-zhou Gong
{"title":"随机动力学的局部poincar<e:1>不等式及其在Ising模型中的应用","authors":"Kai-yuan Cui,&nbsp;Fu-zhou Gong","doi":"10.1007/s10255-025-0001-1","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the idea of stochastic quantization proposed by Parisi and Wu, we reconstruct the transition probability function that has a central role in the renormalization group using a stochastic differential equation. From a probabilistic perspective, the renormalization procedure can be characterized by a discrete-time Markov chain. Therefore, we focus on this stochastic dynamic, and establish the local Poincaré inequality by calculating the Bakry-Émery curvature for two point functions. Finally, we choose an appropriate coupling relationship between parameters <i>K</i> and <i>T</i> to obtain the Poincaré inequality of two point functions for the limiting system. Our method extends the classic Bakry-Émery criterion, and the results provide a new perspective to characterize the renormalization procedure.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"305 - 336"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Local Poincaré Inequality of Stochastic Dynamic and Application to the Ising Model\",\"authors\":\"Kai-yuan Cui,&nbsp;Fu-zhou Gong\",\"doi\":\"10.1007/s10255-025-0001-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by the idea of stochastic quantization proposed by Parisi and Wu, we reconstruct the transition probability function that has a central role in the renormalization group using a stochastic differential equation. From a probabilistic perspective, the renormalization procedure can be characterized by a discrete-time Markov chain. Therefore, we focus on this stochastic dynamic, and establish the local Poincaré inequality by calculating the Bakry-Émery curvature for two point functions. Finally, we choose an appropriate coupling relationship between parameters <i>K</i> and <i>T</i> to obtain the Poincaré inequality of two point functions for the limiting system. Our method extends the classic Bakry-Émery criterion, and the results provide a new perspective to characterize the renormalization procedure.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 2\",\"pages\":\"305 - 336\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0001-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0001-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

受Parisi和Wu提出的随机量化思想的启发,我们利用随机微分方程重构了在重整化群中起核心作用的转移概率函数。从概率的角度来看,重整化过程可以用离散时间马尔可夫链来表征。因此,我们关注这种随机动力学,并通过计算两个点函数的Bakry-Émery曲率来建立局部poincar不等式。最后,选择参数K与参数T之间的适当耦合关系,得到了极限系统两点函数的poincar不等式。我们的方法扩展了经典的Bakry-Émery准则,结果为表征重整化过程提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Local Poincaré Inequality of Stochastic Dynamic and Application to the Ising Model

Inspired by the idea of stochastic quantization proposed by Parisi and Wu, we reconstruct the transition probability function that has a central role in the renormalization group using a stochastic differential equation. From a probabilistic perspective, the renormalization procedure can be characterized by a discrete-time Markov chain. Therefore, we focus on this stochastic dynamic, and establish the local Poincaré inequality by calculating the Bakry-Émery curvature for two point functions. Finally, we choose an appropriate coupling relationship between parameters K and T to obtain the Poincaré inequality of two point functions for the limiting system. Our method extends the classic Bakry-Émery criterion, and the results provide a new perspective to characterize the renormalization procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信