具有衰落记忆的非经典扩散方程的时变全局吸引子

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Yu-ming Qin, Xiao-ling Chen
{"title":"具有衰落记忆的非经典扩散方程的时变全局吸引子","authors":"Yu-ming Qin,&nbsp;Xiao-ling Chen","doi":"10.1007/s10255-024-1036-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term <i>f</i> satisfies critical exponential growth and the external force <i>g</i>(<i>x</i>) ∈ <i>L</i><sup>2</sup>(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor <span>\\({\\mathscr A}={\\{A_{t}}\\}_{t\\in{\\mathbb R}}\\)</span> in <i>ℳ</i><sub><i>t</i></sub>. Furthermore, we achieve the regularity of <span>\\({\\mathscr A}\\)</span>, that is, <i>A</i><sub><i>t</i></sub> is bounded in <i>ℳ</i><span>\n <sup>1</sup><sub><i>t</i></sub>\n \n </span> with a bound independent of <i>t</i>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"498 - 512"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory\",\"authors\":\"Yu-ming Qin,&nbsp;Xiao-ling Chen\",\"doi\":\"10.1007/s10255-024-1036-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term <i>f</i> satisfies critical exponential growth and the external force <i>g</i>(<i>x</i>) ∈ <i>L</i><sup>2</sup>(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor <span>\\\\({\\\\mathscr A}={\\\\{A_{t}}\\\\}_{t\\\\in{\\\\mathbb R}}\\\\)</span> in <i>ℳ</i><sub><i>t</i></sub>. Furthermore, we achieve the regularity of <span>\\\\({\\\\mathscr A}\\\\)</span>, that is, <i>A</i><sub><i>t</i></sub> is bounded in <i>ℳ</i><span>\\n <sup>1</sup><sub><i>t</i></sub>\\n \\n </span> with a bound independent of <i>t</i>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 2\",\"pages\":\"498 - 512\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1036-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1036-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了当非线性项f满足临界指数增长,且外力g(x)∈L2(Ω)时,具有衰落记忆的非经典扩散方程解的长时间行为。在时变空间的框架下,我们验证了吸收集的存在性和过程的渐近紧性,从而得到了系统中全局吸引子\({\mathscr A}={\{A_{t}}\}_{t\in{\mathbb R}}\)的存在性。进一步,我们实现了\({\mathscr A}\)的正则性,即At在ta1t中有界,且界与t无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory

In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x) ∈ L2(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor \({\mathscr A}={\{A_{t}}\}_{t\in{\mathbb R}}\) in t. Furthermore, we achieve the regularity of \({\mathscr A}\), that is, At is bounded in 1t with a bound independent of t.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信