具有重要子图因子的一般最小低阶混杂分图设计

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Tao Sun, Sheng-li Zhao
{"title":"具有重要子图因子的一般最小低阶混杂分图设计","authors":"Tao Sun,&nbsp;Sheng-li Zhao","doi":"10.1007/s10255-024-1027-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the regular <i>s</i>-level fractional factorial split-plot (FFSP) designs when the subplot (SP) factors are more important. The idea of general minimum lower-order confounding criterion is applied to such designs, and the general minimum lower-order confounding criterion of type SP (SP-GMC) is proposed. Using a finite projective geometric formulation, we derive explicit formulae connecting the key terms for the criterion with the complementary set. These results are applied to choose optimal FFSP designs under the SP-GMC criterion. Some two- and three-level SP-GMC FFSP designs are constructed.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"441 - 455"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Minimum Lower-order Confounding Split-plot Designs with Important Subplot Factors\",\"authors\":\"Tao Sun,&nbsp;Sheng-li Zhao\",\"doi\":\"10.1007/s10255-024-1027-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the regular <i>s</i>-level fractional factorial split-plot (FFSP) designs when the subplot (SP) factors are more important. The idea of general minimum lower-order confounding criterion is applied to such designs, and the general minimum lower-order confounding criterion of type SP (SP-GMC) is proposed. Using a finite projective geometric formulation, we derive explicit formulae connecting the key terms for the criterion with the complementary set. These results are applied to choose optimal FFSP designs under the SP-GMC criterion. Some two- and three-level SP-GMC FFSP designs are constructed.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 2\",\"pages\":\"441 - 455\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1027-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1027-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,当子图(SP)因素更重要时,我们考虑正则s水平分数阶乘分裂图(FFSP)设计。将一般最小下阶混杂判据的思想应用于此类设计,提出了SP型的一般最小下阶混杂判据(SP- gmc)。利用有限射影几何公式,导出了将判据关键项与互补集联系起来的显式公式。这些结果应用于SP-GMC准则下的FFSP优化设计。构建了一些二级和三级SP-GMC FFSP设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Minimum Lower-order Confounding Split-plot Designs with Important Subplot Factors

In this paper, we consider the regular s-level fractional factorial split-plot (FFSP) designs when the subplot (SP) factors are more important. The idea of general minimum lower-order confounding criterion is applied to such designs, and the general minimum lower-order confounding criterion of type SP (SP-GMC) is proposed. Using a finite projective geometric formulation, we derive explicit formulae connecting the key terms for the criterion with the complementary set. These results are applied to choose optimal FFSP designs under the SP-GMC criterion. Some two- and three-level SP-GMC FFSP designs are constructed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信