{"title":"多元标记Hawkes过程的中心极限定理、中等偏差和大偏差的上界","authors":"Ming-zhou Xu, Kun Cheng, Yun-zheng Ding","doi":"10.1007/s10255-025-0006-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study a multivariate linear Hawkes process with random marks. In this paper, we establish that a central limit theorem, a moderate deviation principle and an upper bound of large deviation for multivariate marked Hawkes processes hold.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"573 - 587"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central Limit Theorem, Moderate Deviation and an Upper Bound of Large Deviation for Multivariate Marked Hawkes Processes\",\"authors\":\"Ming-zhou Xu, Kun Cheng, Yun-zheng Ding\",\"doi\":\"10.1007/s10255-025-0006-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a multivariate linear Hawkes process with random marks. In this paper, we establish that a central limit theorem, a moderate deviation principle and an upper bound of large deviation for multivariate marked Hawkes processes hold.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 2\",\"pages\":\"573 - 587\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0006-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0006-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Central Limit Theorem, Moderate Deviation and an Upper Bound of Large Deviation for Multivariate Marked Hawkes Processes
We study a multivariate linear Hawkes process with random marks. In this paper, we establish that a central limit theorem, a moderate deviation principle and an upper bound of large deviation for multivariate marked Hawkes processes hold.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.