图的弱环划分的扇型条件的类比

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Xiao-dong Chen, Qing Ji, Zhi-quan Hu
{"title":"图的弱环划分的扇型条件的类比","authors":"Xiao-dong Chen,&nbsp;Qing Ji,&nbsp;Zhi-quan Hu","doi":"10.1007/s10255-025-0008-7","DOIUrl":null,"url":null,"abstract":"<div><p>For a graph <i>G</i> of order <i>n</i> and a positive integer <i>k</i>, a <i>k</i>-weak cycle partition of <i>G</i>, called <i>k</i>-WCP, is a sequence of vertex disjoint subgraphs <i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, ⋯, <i>H</i><sub><i>k</i></sub> of <i>G</i> with <span>\\(\\bigcup\\nolimits_{i=1}^{k} V(H_{i})=V(G)\\)</span>, where <i>H</i><sub><i>i</i></sub> is isomorphic to <i>K</i><sub>1</sub>, <i>K</i><sub>2</sub> or a cycle. Let <i>σ</i><sub>2</sub>(<i>G</i>) = min{<i>d</i>(<i>x</i>) + <i>d</i>(<i>y</i>): <i>xy</i> ∉ <i>E</i>(<i>G</i>), <i>x, y</i> ∈ <i>V</i>(<i>G</i>)}. Hu and Li [Discrete Math. 307(2007)] proved that if <i>G</i> is a graph of order <i>n</i> ≥ <i>k</i> + 12 with a <i>k</i>-WCP and <span>\\(\\sigma_{2}(G) \\geq {{2n+k-4} \\over 3}\\)</span>, then <i>G</i> contains a <i>k</i>-WCP with at most one subgraph isomorphic to <i>K</i><sub>2</sub>. In this paper, we generalize their result on the analogy of Fan-type condition that <span>\\(\\max\\{{d(x),d(y)}\\} \\geq {{2n+k-4} \\over 6}\\)</span> for each pair of nonadjacent vertices <i>x, y</i> ∈ <i>V</i>(<i>G</i>).</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"525 - 535"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analogy of Fan-type Condition on Weak Cycle Partition of Graphs\",\"authors\":\"Xiao-dong Chen,&nbsp;Qing Ji,&nbsp;Zhi-quan Hu\",\"doi\":\"10.1007/s10255-025-0008-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a graph <i>G</i> of order <i>n</i> and a positive integer <i>k</i>, a <i>k</i>-weak cycle partition of <i>G</i>, called <i>k</i>-WCP, is a sequence of vertex disjoint subgraphs <i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, ⋯, <i>H</i><sub><i>k</i></sub> of <i>G</i> with <span>\\\\(\\\\bigcup\\\\nolimits_{i=1}^{k} V(H_{i})=V(G)\\\\)</span>, where <i>H</i><sub><i>i</i></sub> is isomorphic to <i>K</i><sub>1</sub>, <i>K</i><sub>2</sub> or a cycle. Let <i>σ</i><sub>2</sub>(<i>G</i>) = min{<i>d</i>(<i>x</i>) + <i>d</i>(<i>y</i>): <i>xy</i> ∉ <i>E</i>(<i>G</i>), <i>x, y</i> ∈ <i>V</i>(<i>G</i>)}. Hu and Li [Discrete Math. 307(2007)] proved that if <i>G</i> is a graph of order <i>n</i> ≥ <i>k</i> + 12 with a <i>k</i>-WCP and <span>\\\\(\\\\sigma_{2}(G) \\\\geq {{2n+k-4} \\\\over 3}\\\\)</span>, then <i>G</i> contains a <i>k</i>-WCP with at most one subgraph isomorphic to <i>K</i><sub>2</sub>. In this paper, we generalize their result on the analogy of Fan-type condition that <span>\\\\(\\\\max\\\\{{d(x),d(y)}\\\\} \\\\geq {{2n+k-4} \\\\over 6}\\\\)</span> for each pair of nonadjacent vertices <i>x, y</i> ∈ <i>V</i>(<i>G</i>).</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 2\",\"pages\":\"525 - 535\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0008-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0008-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于n阶图G和正整数k, G的k弱环分割,称为k- wcp,是具有\(\bigcup\nolimits_{i=1}^{k} V(H_{i})=V(G)\)的G的顶点不相交子图H1, H2,⋯,Hk的序列,其中Hi同构于K1, K2或一个环。设σ2(G) = mind{(x) + d(y): xy∈E(G), x, y∈V(G)。}Hu和Li[离散数学307(2007)]证明了如果G是具有k- wcp和\(\sigma_{2}(G) \geq {{2n+k-4} \over 3}\)的n≥k + 12阶图,则G包含一个k- wcp,且该k- wcp最多有一个子图同构于K2。在本文中,我们将他们的结果推广到对于每一对不相邻的顶点x, y∈V(G)的fan型条件\(\max\{{d(x),d(y)}\} \geq {{2n+k-4} \over 6}\)的类比上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analogy of Fan-type Condition on Weak Cycle Partition of Graphs

For a graph G of order n and a positive integer k, a k-weak cycle partition of G, called k-WCP, is a sequence of vertex disjoint subgraphs H1, H2, ⋯, Hk of G with \(\bigcup\nolimits_{i=1}^{k} V(H_{i})=V(G)\), where Hi is isomorphic to K1, K2 or a cycle. Let σ2(G) = min{d(x) + d(y): xyE(G), x, yV(G)}. Hu and Li [Discrete Math. 307(2007)] proved that if G is a graph of order nk + 12 with a k-WCP and \(\sigma_{2}(G) \geq {{2n+k-4} \over 3}\), then G contains a k-WCP with at most one subgraph isomorphic to K2. In this paper, we generalize their result on the analogy of Fan-type condition that \(\max\{{d(x),d(y)}\} \geq {{2n+k-4} \over 6}\) for each pair of nonadjacent vertices x, yV(G).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信