Wei-Ta Chen;Chia-Chen Li;Yao-Hong Liu;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun
{"title":"基于功能近红外光谱测量的年轻人偏头痛检测","authors":"Wei-Ta Chen;Chia-Chen Li;Yao-Hong Liu;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun","doi":"10.1109/JSTQE.2025.3540761","DOIUrl":null,"url":null,"abstract":"This study investigated the neurovascular responses in young individuals with fewer complications using functional near-infrared spectroscopy (fNIRS). Thirty-two young migraines and thirty-two healthy control subjects (HC) were measured by fNIRS to observe changes in hemoglobin in the prefrontal cortex (PFC). According to the structural changes in the frontal cortex in migraine patients, two mental stress tasks and a concentration task (CT) were designed. The statistical findings showed that all three tasks revealed differences in prefrontal blood oxygenation between groups. Specifically, during the mental task-related exercises, a significant difference was identified in the left hemisphere, whereas during the CT, a notable distinction was noted in the right hemisphere. Furthermore, machine learning techniques were applied for migraine classification, receiving test accuracies of 82%, 89%, and 90% for the mental arithmetic task (MAT), the verbal fluency task (VFT), and the CT, respectively. These results demonstrate the feasibility of utilizing fNIRS with machine learning to classify migraines in young individuals.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 4: Adv. in Neurophoton. for Non-Inv. Brain Mon.","pages":"1-11"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migraine Detection in Young Group Based on Functional Near-Infrared Spectroscopy Measurements\",\"authors\":\"Wei-Ta Chen;Chia-Chen Li;Yao-Hong Liu;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun\",\"doi\":\"10.1109/JSTQE.2025.3540761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the neurovascular responses in young individuals with fewer complications using functional near-infrared spectroscopy (fNIRS). Thirty-two young migraines and thirty-two healthy control subjects (HC) were measured by fNIRS to observe changes in hemoglobin in the prefrontal cortex (PFC). According to the structural changes in the frontal cortex in migraine patients, two mental stress tasks and a concentration task (CT) were designed. The statistical findings showed that all three tasks revealed differences in prefrontal blood oxygenation between groups. Specifically, during the mental task-related exercises, a significant difference was identified in the left hemisphere, whereas during the CT, a notable distinction was noted in the right hemisphere. Furthermore, machine learning techniques were applied for migraine classification, receiving test accuracies of 82%, 89%, and 90% for the mental arithmetic task (MAT), the verbal fluency task (VFT), and the CT, respectively. These results demonstrate the feasibility of utilizing fNIRS with machine learning to classify migraines in young individuals.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":\"31 4: Adv. in Neurophoton. for Non-Inv. Brain Mon.\",\"pages\":\"1-11\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10906410/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10906410/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Migraine Detection in Young Group Based on Functional Near-Infrared Spectroscopy Measurements
This study investigated the neurovascular responses in young individuals with fewer complications using functional near-infrared spectroscopy (fNIRS). Thirty-two young migraines and thirty-two healthy control subjects (HC) were measured by fNIRS to observe changes in hemoglobin in the prefrontal cortex (PFC). According to the structural changes in the frontal cortex in migraine patients, two mental stress tasks and a concentration task (CT) were designed. The statistical findings showed that all three tasks revealed differences in prefrontal blood oxygenation between groups. Specifically, during the mental task-related exercises, a significant difference was identified in the left hemisphere, whereas during the CT, a notable distinction was noted in the right hemisphere. Furthermore, machine learning techniques were applied for migraine classification, receiving test accuracies of 82%, 89%, and 90% for the mental arithmetic task (MAT), the verbal fluency task (VFT), and the CT, respectively. These results demonstrate the feasibility of utilizing fNIRS with machine learning to classify migraines in young individuals.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.