文本到图像人物检索的视觉语言噪声建模

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guolin Xu;Yong Feng;Yanying Chen;Guofan Duan;Mingliang Zhou
{"title":"文本到图像人物检索的视觉语言噪声建模","authors":"Guolin Xu;Yong Feng;Yanying Chen;Guofan Duan;Mingliang Zhou","doi":"10.1109/LSP.2025.3553424","DOIUrl":null,"url":null,"abstract":"Text-to-image person retrieval (TPR) focuses on finding a specific person based on the textual description, and most methods implicitly assume the training image-text pairs are correctly aligned. In practice, the image-text pairs exist under-correlated or false-correlated due to the low quality of the images and annotation errors. Meanwhile, remarkable similarities between different person identities may lead to a mismatch between text and image. To tackle the two issues, we present a Visual-Language Noise Modeling (ViLNM) method that successfully captures robust cross-modal associations even with noise. Specifically, we design a Noise Token Aware (NTA) module that eliminates the words in the textual description that do not match the image, utilizing the matched words to establish a more reliable association. Besides, to enhance the recognition ability of the model for different person identities, we propose a Joint Inter and Intra-Modal Contrastive Loss (JII) and Local Aggregation (LA) module to increase the feature differences between different person identities. We conduct comprehensive experiments on three public benchmarks, and ViLNM performs best.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1386-1390"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViLNM: Visual-Language Noise Modeling for Text-to-Image Person Retrieval\",\"authors\":\"Guolin Xu;Yong Feng;Yanying Chen;Guofan Duan;Mingliang Zhou\",\"doi\":\"10.1109/LSP.2025.3553424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text-to-image person retrieval (TPR) focuses on finding a specific person based on the textual description, and most methods implicitly assume the training image-text pairs are correctly aligned. In practice, the image-text pairs exist under-correlated or false-correlated due to the low quality of the images and annotation errors. Meanwhile, remarkable similarities between different person identities may lead to a mismatch between text and image. To tackle the two issues, we present a Visual-Language Noise Modeling (ViLNM) method that successfully captures robust cross-modal associations even with noise. Specifically, we design a Noise Token Aware (NTA) module that eliminates the words in the textual description that do not match the image, utilizing the matched words to establish a more reliable association. Besides, to enhance the recognition ability of the model for different person identities, we propose a Joint Inter and Intra-Modal Contrastive Loss (JII) and Local Aggregation (LA) module to increase the feature differences between different person identities. We conduct comprehensive experiments on three public benchmarks, and ViLNM performs best.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1386-1390\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10935662/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10935662/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

文本到图像的人检索(TPR)侧重于基于文本描述找到特定的人,大多数方法隐式地假设训练图像-文本对是正确对齐的。在实际应用中,由于图像质量不高和标注错误,图像-文本对存在欠相关或假相关。同时,不同人的身份之间的显著相似性可能导致文本和图像之间的不匹配。为了解决这两个问题,我们提出了一种视觉语言噪声建模(ViLNM)方法,即使有噪声,也能成功捕获鲁棒的跨模态关联。具体来说,我们设计了一个噪声令牌感知(NTA)模块,该模块消除了文本描述中与图像不匹配的单词,利用匹配的单词建立更可靠的关联。此外,为了提高模型对不同人身份的识别能力,我们提出了联合模态间和模态内对比损失(JII)和局部聚集(LA)模块,以增加不同人身份之间的特征差异。我们在三个公共基准上进行了全面的实验,ViLNM表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViLNM: Visual-Language Noise Modeling for Text-to-Image Person Retrieval
Text-to-image person retrieval (TPR) focuses on finding a specific person based on the textual description, and most methods implicitly assume the training image-text pairs are correctly aligned. In practice, the image-text pairs exist under-correlated or false-correlated due to the low quality of the images and annotation errors. Meanwhile, remarkable similarities between different person identities may lead to a mismatch between text and image. To tackle the two issues, we present a Visual-Language Noise Modeling (ViLNM) method that successfully captures robust cross-modal associations even with noise. Specifically, we design a Noise Token Aware (NTA) module that eliminates the words in the textual description that do not match the image, utilizing the matched words to establish a more reliable association. Besides, to enhance the recognition ability of the model for different person identities, we propose a Joint Inter and Intra-Modal Contrastive Loss (JII) and Local Aggregation (LA) module to increase the feature differences between different person identities. We conduct comprehensive experiments on three public benchmarks, and ViLNM performs best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信