GeXSe(生成解释性传感器系统):智能空间物联网中人类活动识别的深度生成方法

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sun Yuan;Salami Pargoo Navid;Ortiz Jorge
{"title":"GeXSe(生成解释性传感器系统):智能空间物联网中人类活动识别的深度生成方法","authors":"Sun Yuan;Salami Pargoo Navid;Ortiz Jorge","doi":"10.1109/JSEN.2025.3541158","DOIUrl":null,"url":null,"abstract":"Effective sensemaking is crucial across various domains, where trust in system outputs is essential, highlighting a significant challenge in relying solely on sensor-based activity recognition. This limitation underscores the need for interpretable models that process raw data and provide comprehensible insights. Our work introduces generative explanatory sensor system (GeXSe), a novel multitask framework that jointly models raw sensors for classification while also generating grounded visual explanations. At the core of GeXSe lies a parallel multibranch multilayer perceptron fast Fourier convolution (PMB-MLP-FFC) module tailored for multimodal sensor fusion and explanation generation. PMB-MLP-FFC extracts interpretable features optimized for both tasks through multibranch parallel convolutions and Fourier transforms. We validated GeXSe across three diverse public datasets of daily activities recorded by camera, microphone, motion, and environmental sensors. Results show superior activity recognition over baseline models. Furthermore, human evaluation studies confirm the generated visual explanations enhance understanding and trust compared to purely sensor-based outputs.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"12407-12421"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeXSe (Generative Explanatory Sensor System): A Deep Generative Method for Human Activity Recognition of Smart Spaces IOT\",\"authors\":\"Sun Yuan;Salami Pargoo Navid;Ortiz Jorge\",\"doi\":\"10.1109/JSEN.2025.3541158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective sensemaking is crucial across various domains, where trust in system outputs is essential, highlighting a significant challenge in relying solely on sensor-based activity recognition. This limitation underscores the need for interpretable models that process raw data and provide comprehensible insights. Our work introduces generative explanatory sensor system (GeXSe), a novel multitask framework that jointly models raw sensors for classification while also generating grounded visual explanations. At the core of GeXSe lies a parallel multibranch multilayer perceptron fast Fourier convolution (PMB-MLP-FFC) module tailored for multimodal sensor fusion and explanation generation. PMB-MLP-FFC extracts interpretable features optimized for both tasks through multibranch parallel convolutions and Fourier transforms. We validated GeXSe across three diverse public datasets of daily activities recorded by camera, microphone, motion, and environmental sensors. Results show superior activity recognition over baseline models. Furthermore, human evaluation studies confirm the generated visual explanations enhance understanding and trust compared to purely sensor-based outputs.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 7\",\"pages\":\"12407-12421\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10893687/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10893687/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有效的意义生成在各个领域都是至关重要的,在这些领域中,对系统输出的信任是必不可少的,这突出了仅仅依赖基于传感器的活动识别的重大挑战。这种限制强调了对处理原始数据并提供可理解见解的可解释模型的需求。我们的工作引入了生成解释性传感器系统(GeXSe),这是一种新的多任务框架,可以联合建模原始传感器进行分类,同时还可以生成基于视觉的解释。GeXSe的核心是为多模态传感器融合和解释生成量身定制的并行多分支多层感知器快速傅里叶卷积(PMB-MLP-FFC)模块。PMB-MLP-FFC通过多分支并行卷积和傅里叶变换提取可解释的特征。我们通过相机、麦克风、运动和环境传感器记录的三个不同的日常活动公共数据集验证了GeXSe。结果显示优于基线模型的活动识别。此外,人类评估研究证实,与纯粹基于传感器的输出相比,生成的视觉解释增强了理解和信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GeXSe (Generative Explanatory Sensor System): A Deep Generative Method for Human Activity Recognition of Smart Spaces IOT
Effective sensemaking is crucial across various domains, where trust in system outputs is essential, highlighting a significant challenge in relying solely on sensor-based activity recognition. This limitation underscores the need for interpretable models that process raw data and provide comprehensible insights. Our work introduces generative explanatory sensor system (GeXSe), a novel multitask framework that jointly models raw sensors for classification while also generating grounded visual explanations. At the core of GeXSe lies a parallel multibranch multilayer perceptron fast Fourier convolution (PMB-MLP-FFC) module tailored for multimodal sensor fusion and explanation generation. PMB-MLP-FFC extracts interpretable features optimized for both tasks through multibranch parallel convolutions and Fourier transforms. We validated GeXSe across three diverse public datasets of daily activities recorded by camera, microphone, motion, and environmental sensors. Results show superior activity recognition over baseline models. Furthermore, human evaluation studies confirm the generated visual explanations enhance understanding and trust compared to purely sensor-based outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信